Evaluate
-10-21i
Real Part
-10
Share
Copied to clipboard
3\times 1-2i^{35}+1+5i^{14}-\left(9-23i^{7}\right)
Calculate i to the power of 4 and get 1.
3-2i^{35}+1+5i^{14}-\left(9-23i^{7}\right)
Multiply 3 and 1 to get 3.
3-2\left(-i\right)+1+5i^{14}-\left(9-23i^{7}\right)
Calculate i to the power of 35 and get -i.
3-\left(-2i\right)+1+5i^{14}-\left(9-23i^{7}\right)
Multiply 2 and -i to get -2i.
3+2i+1+5i^{14}-\left(9-23i^{7}\right)
The opposite of -2i is 2i.
5i^{14}+4+2i-\left(9-23i^{7}\right)
Do the additions in 3+2i+1.
5i^{14}+4+2i-\left(9-23\left(-i\right)\right)
Calculate i to the power of 7 and get -i.
5i^{14}+4+2i-\left(9-\left(-23i\right)\right)
Multiply 23 and -i to get -23i.
5i^{14}+4+2i-\left(9+23i\right)
The opposite of -23i is 23i.
5\left(-1\right)+4+2i-\left(9+23i\right)
Calculate i to the power of 14 and get -1.
-5+4+2i-\left(9+23i\right)
Multiply 5 and -1 to get -5.
-1+2i-\left(9+23i\right)
Do the additions in -5+4+2i.
-10-21i
Subtract 9+23i from -1+2i to get -10-21i.
Re(3\times 1-2i^{35}+1+5i^{14}-\left(9-23i^{7}\right))
Calculate i to the power of 4 and get 1.
Re(3-2i^{35}+1+5i^{14}-\left(9-23i^{7}\right))
Multiply 3 and 1 to get 3.
Re(3-2\left(-i\right)+1+5i^{14}-\left(9-23i^{7}\right))
Calculate i to the power of 35 and get -i.
Re(3-\left(-2i\right)+1+5i^{14}-\left(9-23i^{7}\right))
Multiply 2 and -i to get -2i.
Re(3+2i+1+5i^{14}-\left(9-23i^{7}\right))
The opposite of -2i is 2i.
Re(5i^{14}+4+2i-\left(9-23i^{7}\right))
Do the additions in 3+2i+1.
Re(5i^{14}+4+2i-\left(9-23\left(-i\right)\right))
Calculate i to the power of 7 and get -i.
Re(5i^{14}+4+2i-\left(9-\left(-23i\right)\right))
Multiply 23 and -i to get -23i.
Re(5i^{14}+4+2i-\left(9+23i\right))
The opposite of -23i is 23i.
Re(5\left(-1\right)+4+2i-\left(9+23i\right))
Calculate i to the power of 14 and get -1.
Re(-5+4+2i-\left(9+23i\right))
Multiply 5 and -1 to get -5.
Re(-1+2i-\left(9+23i\right))
Do the additions in -5+4+2i.
Re(-10-21i)
Subtract 9+23i from -1+2i to get -10-21i.
-10
The real part of -10-21i is -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}