Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. g
Tick mark Image

Similar Problems from Web Search

Share

3g^{\frac{2}{5}}-7g^{\frac{1}{6}}-g^{\frac{2}{5}}+3g^{\frac{1}{6}}
To find the opposite of g^{\frac{2}{5}}-3g^{\frac{1}{6}}, find the opposite of each term.
2g^{\frac{2}{5}}-7g^{\frac{1}{6}}+3g^{\frac{1}{6}}
Combine 3g^{\frac{2}{5}} and -g^{\frac{2}{5}} to get 2g^{\frac{2}{5}}.
2g^{\frac{2}{5}}-4g^{\frac{1}{6}}
Combine -7g^{\frac{1}{6}} and 3g^{\frac{1}{6}} to get -4g^{\frac{1}{6}}.
\frac{\mathrm{d}}{\mathrm{d}g}(3g^{\frac{2}{5}}-7g^{\frac{1}{6}}-g^{\frac{2}{5}}+3g^{\frac{1}{6}})
To find the opposite of g^{\frac{2}{5}}-3g^{\frac{1}{6}}, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}g}(2g^{\frac{2}{5}}-7g^{\frac{1}{6}}+3g^{\frac{1}{6}})
Combine 3g^{\frac{2}{5}} and -g^{\frac{2}{5}} to get 2g^{\frac{2}{5}}.
\frac{\mathrm{d}}{\mathrm{d}g}(2g^{\frac{2}{5}}-4g^{\frac{1}{6}})
Combine -7g^{\frac{1}{6}} and 3g^{\frac{1}{6}} to get -4g^{\frac{1}{6}}.
\frac{2}{5}\times 2g^{\frac{2}{5}-1}+\frac{1}{6}\left(-4\right)g^{\frac{1}{6}-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{4}{5}g^{\frac{2}{5}-1}+\frac{1}{6}\left(-4\right)g^{\frac{1}{6}-1}
Multiply \frac{2}{5} times 2.
\frac{4}{5}g^{-\frac{3}{5}}+\frac{1}{6}\left(-4\right)g^{\frac{1}{6}-1}
Subtract 1 from \frac{2}{5}.
\frac{4}{5}g^{-\frac{3}{5}}-\frac{2}{3}g^{\frac{1}{6}-1}
Multiply \frac{1}{6} times -4.
\frac{4}{5}g^{-\frac{3}{5}}-\frac{2}{3}g^{-\frac{5}{6}}
Subtract 1 from \frac{1}{6}.