Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(9a^{2}-4b^{2}\right)\left(9a^{2}+4b^{2}\right)-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Use the distributive property to multiply 3a-2b by 3a+2b and combine like terms.
\left(9a^{2}\right)^{2}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Consider \left(9a^{2}-4b^{2}\right)\left(9a^{2}+4b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
9^{2}\left(a^{2}\right)^{2}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Expand \left(9a^{2}\right)^{2}.
9^{2}a^{4}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
81a^{4}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Calculate 9 to the power of 2 and get 81.
81a^{4}-4^{2}\left(b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Expand \left(4b^{2}\right)^{2}.
81a^{4}-4^{2}b^{4}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
81a^{4}-16b^{4}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
81a^{4}-16b^{4}-\left(-3\right)^{4}a^{4}+\left(-3b^{2}\right)^{2}
Expand \left(-3a\right)^{4}.
81a^{4}-16b^{4}-81a^{4}+\left(-3b^{2}\right)^{2}
Calculate -3 to the power of 4 and get 81.
-16b^{4}+\left(-3b^{2}\right)^{2}
Combine 81a^{4} and -81a^{4} to get 0.
-16b^{4}+\left(-3\right)^{2}\left(b^{2}\right)^{2}
Expand \left(-3b^{2}\right)^{2}.
-16b^{4}+\left(-3\right)^{2}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-16b^{4}+9b^{4}
Calculate -3 to the power of 2 and get 9.
-7b^{4}
Combine -16b^{4} and 9b^{4} to get -7b^{4}.
\left(9a^{2}-4b^{2}\right)\left(9a^{2}+4b^{2}\right)-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Use the distributive property to multiply 3a-2b by 3a+2b and combine like terms.
\left(9a^{2}\right)^{2}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Consider \left(9a^{2}-4b^{2}\right)\left(9a^{2}+4b^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
9^{2}\left(a^{2}\right)^{2}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Expand \left(9a^{2}\right)^{2}.
9^{2}a^{4}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
81a^{4}-\left(4b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Calculate 9 to the power of 2 and get 81.
81a^{4}-4^{2}\left(b^{2}\right)^{2}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Expand \left(4b^{2}\right)^{2}.
81a^{4}-4^{2}b^{4}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
81a^{4}-16b^{4}-\left(-3a\right)^{4}+\left(-3b^{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
81a^{4}-16b^{4}-\left(-3\right)^{4}a^{4}+\left(-3b^{2}\right)^{2}
Expand \left(-3a\right)^{4}.
81a^{4}-16b^{4}-81a^{4}+\left(-3b^{2}\right)^{2}
Calculate -3 to the power of 4 and get 81.
-16b^{4}+\left(-3b^{2}\right)^{2}
Combine 81a^{4} and -81a^{4} to get 0.
-16b^{4}+\left(-3\right)^{2}\left(b^{2}\right)^{2}
Expand \left(-3b^{2}\right)^{2}.
-16b^{4}+\left(-3\right)^{2}b^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-16b^{4}+9b^{4}
Calculate -3 to the power of 2 and get 9.
-7b^{4}
Combine -16b^{4} and 9b^{4} to get -7b^{4}.