Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{3}a^{2}b^{2}\left(9a^{2}+2ab+12b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{3}\left(9a^{2}+2ab+12b^{2}\right)}{-\frac{1}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{3a^{2}+\frac{2}{3}ab+4b^{2}}{-\frac{1}{4}}
Expand the expression.
\frac{\left(3a^{2}+\frac{2}{3}ab+4b^{2}\right)\times 4}{-1}
Divide 3a^{2}+\frac{2}{3}ab+4b^{2} by -\frac{1}{4} by multiplying 3a^{2}+\frac{2}{3}ab+4b^{2} by the reciprocal of -\frac{1}{4}.
-\left(3a^{2}+\frac{2}{3}ab+4b^{2}\right)\times 4
Anything divided by -1 gives its opposite.
-\left(12a^{2}+\frac{8}{3}ab+16b^{2}\right)
Use the distributive property to multiply 3a^{2}+\frac{2}{3}ab+4b^{2} by 4.
-12a^{2}-\frac{8}{3}ab-16b^{2}
To find the opposite of 12a^{2}+\frac{8}{3}ab+16b^{2}, find the opposite of each term.
\frac{\frac{1}{3}a^{2}b^{2}\left(9a^{2}+2ab+12b^{2}\right)}{-\frac{1}{4}a^{2}b^{2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{3}\left(9a^{2}+2ab+12b^{2}\right)}{-\frac{1}{4}}
Cancel out a^{2}b^{2} in both numerator and denominator.
\frac{3a^{2}+\frac{2}{3}ab+4b^{2}}{-\frac{1}{4}}
Expand the expression.
\frac{\left(3a^{2}+\frac{2}{3}ab+4b^{2}\right)\times 4}{-1}
Divide 3a^{2}+\frac{2}{3}ab+4b^{2} by -\frac{1}{4} by multiplying 3a^{2}+\frac{2}{3}ab+4b^{2} by the reciprocal of -\frac{1}{4}.
-\left(3a^{2}+\frac{2}{3}ab+4b^{2}\right)\times 4
Anything divided by -1 gives its opposite.
-\left(12a^{2}+\frac{8}{3}ab+16b^{2}\right)
Use the distributive property to multiply 3a^{2}+\frac{2}{3}ab+4b^{2} by 4.
-12a^{2}-\frac{8}{3}ab-16b^{2}
To find the opposite of 12a^{2}+\frac{8}{3}ab+16b^{2}, find the opposite of each term.