Solve for D
\left\{\begin{matrix}\\D=\frac{3}{2}=1.5\text{, }&\text{unconditionally}\\D\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&D=\frac{3}{2}\end{matrix}\right.
Share
Copied to clipboard
3^{2}\left(a^{3}\right)^{2}=6a^{6}D
Expand \left(3a^{3}\right)^{2}.
3^{2}a^{6}=6a^{6}D
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
9a^{6}=6a^{6}D
Calculate 3 to the power of 2 and get 9.
6a^{6}D=9a^{6}
Swap sides so that all variable terms are on the left hand side.
\frac{6a^{6}D}{6a^{6}}=\frac{9a^{6}}{6a^{6}}
Divide both sides by 6a^{6}.
D=\frac{9a^{6}}{6a^{6}}
Dividing by 6a^{6} undoes the multiplication by 6a^{6}.
D=\frac{3}{2}
Divide 9a^{6} by 6a^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}