Evaluate
6561a^{13}b^{29}
Expand
6561a^{13}b^{29}
Share
Copied to clipboard
\frac{\left(3a^{2}b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{3^{3}\left(a^{2}\right)^{3}\left(b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
Expand \left(3a^{2}b^{7}\right)^{3}.
\frac{3^{3}a^{6}\left(b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3^{3}a^{6}b^{21}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 7 and 3 to get 21.
\frac{27a^{6}b^{21}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
Calculate 3 to the power of 3 and get 27.
27a^{3}b^{19}\times \left(3a^{2}b^{2}\right)^{5}
Cancel out b^{2}a^{3} in both numerator and denominator.
27a^{3}b^{19}\times 3^{5}\left(a^{2}\right)^{5}\left(b^{2}\right)^{5}
Expand \left(3a^{2}b^{2}\right)^{5}.
27a^{3}b^{19}\times 3^{5}a^{10}\left(b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
27a^{3}b^{19}\times 3^{5}a^{10}b^{10}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
27a^{3}b^{19}\times 243a^{10}b^{10}
Calculate 3 to the power of 5 and get 243.
6561a^{3}b^{19}a^{10}b^{10}
Multiply 27 and 243 to get 6561.
6561a^{13}b^{19}b^{10}
To multiply powers of the same base, add their exponents. Add 3 and 10 to get 13.
6561a^{13}b^{29}
To multiply powers of the same base, add their exponents. Add 19 and 10 to get 29.
\frac{\left(3a^{2}b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{3^{3}\left(a^{2}\right)^{3}\left(b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
Expand \left(3a^{2}b^{7}\right)^{3}.
\frac{3^{3}a^{6}\left(b^{7}\right)^{3}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{3^{3}a^{6}b^{21}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 7 and 3 to get 21.
\frac{27a^{6}b^{21}}{a^{3}b^{2}}\times \left(3a^{2}b^{2}\right)^{5}
Calculate 3 to the power of 3 and get 27.
27a^{3}b^{19}\times \left(3a^{2}b^{2}\right)^{5}
Cancel out b^{2}a^{3} in both numerator and denominator.
27a^{3}b^{19}\times 3^{5}\left(a^{2}\right)^{5}\left(b^{2}\right)^{5}
Expand \left(3a^{2}b^{2}\right)^{5}.
27a^{3}b^{19}\times 3^{5}a^{10}\left(b^{2}\right)^{5}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
27a^{3}b^{19}\times 3^{5}a^{10}b^{10}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
27a^{3}b^{19}\times 243a^{10}b^{10}
Calculate 3 to the power of 5 and get 243.
6561a^{3}b^{19}a^{10}b^{10}
Multiply 27 and 243 to get 6561.
6561a^{13}b^{19}b^{10}
To multiply powers of the same base, add their exponents. Add 3 and 10 to get 13.
6561a^{13}b^{29}
To multiply powers of the same base, add their exponents. Add 19 and 10 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}