Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(3a^{3}b^{-1}\times 2b\right)^{-1}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(3a^{3}\times 2\right)^{-1}
Multiply b^{-1} and b to get 1.
\left(6a^{3}\right)^{-1}
Multiply 3 and 2 to get 6.
6^{-1}\left(a^{3}\right)^{-1}
Expand \left(6a^{3}\right)^{-1}.
6^{-1}a^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{1}{6}a^{-3}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(3a^{3}b^{-1}\times 2b\right)^{-1})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(3a^{3}\times 2\right)^{-1})
Multiply b^{-1} and b to get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(6a^{3}\right)^{-1})
Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(6^{-1}\left(a^{3}\right)^{-1})
Expand \left(6a^{3}\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(6^{-1}a^{-3})
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{6}a^{-3})
Calculate 6 to the power of -1 and get \frac{1}{6}.
-3\times \frac{1}{6}a^{-3-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{2}a^{-3-1}
Multiply -3 times \frac{1}{6}.
-\frac{1}{2}a^{-4}
Subtract 1 from -3.