Evaluate
\frac{1}{6a^{3}}
Differentiate w.r.t. a
-\frac{1}{2a^{4}}
Share
Copied to clipboard
\left(3a^{3}b^{-1}\times 2b\right)^{-1}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\left(3a^{3}\times 2\right)^{-1}
Multiply b^{-1} and b to get 1.
\left(6a^{3}\right)^{-1}
Multiply 3 and 2 to get 6.
6^{-1}\left(a^{3}\right)^{-1}
Expand \left(6a^{3}\right)^{-1}.
6^{-1}a^{-3}
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{1}{6}a^{-3}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(3a^{3}b^{-1}\times 2b\right)^{-1})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(3a^{3}\times 2\right)^{-1})
Multiply b^{-1} and b to get 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(6a^{3}\right)^{-1})
Multiply 3 and 2 to get 6.
\frac{\mathrm{d}}{\mathrm{d}a}(6^{-1}\left(a^{3}\right)^{-1})
Expand \left(6a^{3}\right)^{-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(6^{-1}a^{-3})
To raise a power to another power, multiply the exponents. Multiply 3 and -1 to get -3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{6}a^{-3})
Calculate 6 to the power of -1 and get \frac{1}{6}.
-3\times \frac{1}{6}a^{-3-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{1}{2}a^{-3-1}
Multiply -3 times \frac{1}{6}.
-\frac{1}{2}a^{-4}
Subtract 1 from -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}