Evaluate
24a^{6}
Expand
24a^{6}
Share
Copied to clipboard
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-aa^{5}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 7 from 12 to get 5.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{3^{3}\left(a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Expand \left(3a^{2}\right)^{3}.
\frac{3^{3}a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Calculate 3 to the power of 3 and get 27.
\frac{27a^{6}}{\left(-\frac{1}{3}\right)^{5}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Expand \left(-\frac{1}{3}a\right)^{5}.
\frac{27a^{6}}{-\frac{1}{243}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Calculate -\frac{1}{3} to the power of 5 and get -\frac{1}{243}.
\frac{27a}{-\frac{1}{243}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Cancel out a^{5} in both numerator and denominator.
\frac{27a\times 243}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Divide 27a by -\frac{1}{243} by multiplying 27a by the reciprocal of -\frac{1}{243}.
\frac{6561a}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Multiply 27 and 243 to get 6561.
-6561a-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Anything divided by -1 gives its opposite.
-6561a-a^{6}+6561a+\left(-5a^{3}\right)^{2}
Calculate -9 to the power of 4 and get 6561.
-a^{6}+\left(-5a^{3}\right)^{2}
Combine -6561a and 6561a to get 0.
-a^{6}+\left(-5\right)^{2}\left(a^{3}\right)^{2}
Expand \left(-5a^{3}\right)^{2}.
-a^{6}+\left(-5\right)^{2}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-a^{6}+25a^{6}
Calculate -5 to the power of 2 and get 25.
24a^{6}
Combine -a^{6} and 25a^{6} to get 24a^{6}.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-aa^{5}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 7 from 12 to get 5.
\frac{\left(3a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 1 and 5 to get 6.
\frac{3^{3}\left(a^{2}\right)^{3}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Expand \left(3a^{2}\right)^{3}.
\frac{3^{3}a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{27a^{6}}{\left(-\frac{1}{3}a\right)^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Calculate 3 to the power of 3 and get 27.
\frac{27a^{6}}{\left(-\frac{1}{3}\right)^{5}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Expand \left(-\frac{1}{3}a\right)^{5}.
\frac{27a^{6}}{-\frac{1}{243}a^{5}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Calculate -\frac{1}{3} to the power of 5 and get -\frac{1}{243}.
\frac{27a}{-\frac{1}{243}}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Cancel out a^{5} in both numerator and denominator.
\frac{27a\times 243}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Divide 27a by -\frac{1}{243} by multiplying 27a by the reciprocal of -\frac{1}{243}.
\frac{6561a}{-1}-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Multiply 27 and 243 to get 6561.
-6561a-a^{6}+\left(-9\right)^{4}a+\left(-5a^{3}\right)^{2}
Anything divided by -1 gives its opposite.
-6561a-a^{6}+6561a+\left(-5a^{3}\right)^{2}
Calculate -9 to the power of 4 and get 6561.
-a^{6}+\left(-5a^{3}\right)^{2}
Combine -6561a and 6561a to get 0.
-a^{6}+\left(-5\right)^{2}\left(a^{3}\right)^{2}
Expand \left(-5a^{3}\right)^{2}.
-a^{6}+\left(-5\right)^{2}a^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-a^{6}+25a^{6}
Calculate -5 to the power of 2 and get 25.
24a^{6}
Combine -a^{6} and 25a^{6} to get 24a^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}