Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(3a\right)^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Consider \left(3a+2b\right)\left(3a-2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Expand \left(3a\right)^{2}.
9a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Calculate 3 to the power of 2 and get 9.
9a^{2}-2^{2}b^{2}-\left(a-2b\right)^{2}
Expand \left(2b\right)^{2}.
9a^{2}-4b^{2}-\left(a-2b\right)^{2}
Calculate 2 to the power of 2 and get 4.
9a^{2}-4b^{2}-\left(a^{2}-4ab+4b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
9a^{2}-4b^{2}-a^{2}+4ab-4b^{2}
To find the opposite of a^{2}-4ab+4b^{2}, find the opposite of each term.
8a^{2}-4b^{2}+4ab-4b^{2}
Combine 9a^{2} and -a^{2} to get 8a^{2}.
8a^{2}-8b^{2}+4ab
Combine -4b^{2} and -4b^{2} to get -8b^{2}.
\left(3a\right)^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Consider \left(3a+2b\right)\left(3a-2b\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Expand \left(3a\right)^{2}.
9a^{2}-\left(2b\right)^{2}-\left(a-2b\right)^{2}
Calculate 3 to the power of 2 and get 9.
9a^{2}-2^{2}b^{2}-\left(a-2b\right)^{2}
Expand \left(2b\right)^{2}.
9a^{2}-4b^{2}-\left(a-2b\right)^{2}
Calculate 2 to the power of 2 and get 4.
9a^{2}-4b^{2}-\left(a^{2}-4ab+4b^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2b\right)^{2}.
9a^{2}-4b^{2}-a^{2}+4ab-4b^{2}
To find the opposite of a^{2}-4ab+4b^{2}, find the opposite of each term.
8a^{2}-4b^{2}+4ab-4b^{2}
Combine 9a^{2} and -a^{2} to get 8a^{2}.
8a^{2}-8b^{2}+4ab
Combine -4b^{2} and -4b^{2} to get -8b^{2}.