Solve for a
a=-\frac{\left(x+1\right)^{2}}{x\left(3x+1\right)}
x\neq -\frac{1}{3}\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{a\left(a-8\right)}-a-2}{2\left(3a+1\right)}\text{; }x=-\frac{\sqrt{a\left(a-8\right)}+a+2}{2\left(3a+1\right)}\text{, }&a\neq -\frac{1}{3}\\x=-\frac{3}{5}\text{, }&a=-\frac{1}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{a\left(a-8\right)}-a-2}{2\left(3a+1\right)}\text{; }x=-\frac{\sqrt{a\left(a-8\right)}+a+2}{2\left(3a+1\right)}\text{, }&\left(a\neq -\frac{1}{3}\text{ and }a\leq 0\right)\text{ or }a\geq 8\\x=-\frac{3}{5}\text{, }&a=-\frac{1}{3}\end{matrix}\right.
Graph
Share
Copied to clipboard
3ax^{2}+x^{2}+\left(a+2\right)x+1=0
Use the distributive property to multiply 3a+1 by x^{2}.
3ax^{2}+x^{2}+ax+2x+1=0
Use the distributive property to multiply a+2 by x.
3ax^{2}+ax+2x+1=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
3ax^{2}+ax+1=-x^{2}-2x
Subtract 2x from both sides.
3ax^{2}+ax=-x^{2}-2x-1
Subtract 1 from both sides.
\left(3x^{2}+x\right)a=-x^{2}-2x-1
Combine all terms containing a.
\frac{\left(3x^{2}+x\right)a}{3x^{2}+x}=-\frac{\left(x+1\right)^{2}}{3x^{2}+x}
Divide both sides by 3x^{2}+x.
a=-\frac{\left(x+1\right)^{2}}{3x^{2}+x}
Dividing by 3x^{2}+x undoes the multiplication by 3x^{2}+x.
a=-\frac{\left(x+1\right)^{2}}{x\left(3x+1\right)}
Divide -\left(x+1\right)^{2} by 3x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}