Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9a^{2}+6a+1-\left(3a-1\right)\left(3a+1\right)-2
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(3a+1\right)^{2}.
9a^{2}+6a+1-\left(\left(3a\right)^{2}-1\right)-2
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9a^{2}+6a+1-\left(3^{2}a^{2}-1\right)-2
Expand \left(3a\right)^{2}.
9a^{2}+6a+1-\left(9a^{2}-1\right)-2
Calculate 3 to the power of 2 and get 9.
9a^{2}+6a+1-9a^{2}+1-2
To find the opposite of 9a^{2}-1, find the opposite of each term.
6a+1+1-2
Combine 9a^{2} and -9a^{2} to get 0.
6a+2-2
Add 1 and 1 to get 2.
6a
Subtract 2 from 2 to get 0.
9a^{2}+6a+1-\left(3a-1\right)\left(3a+1\right)-2
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(3a+1\right)^{2}.
9a^{2}+6a+1-\left(\left(3a\right)^{2}-1\right)-2
Consider \left(3a-1\right)\left(3a+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
9a^{2}+6a+1-\left(3^{2}a^{2}-1\right)-2
Expand \left(3a\right)^{2}.
9a^{2}+6a+1-\left(9a^{2}-1\right)-2
Calculate 3 to the power of 2 and get 9.
9a^{2}+6a+1-9a^{2}+1-2
To find the opposite of 9a^{2}-1, find the opposite of each term.
6a+1+1-2
Combine 9a^{2} and -9a^{2} to get 0.
6a+2-2
Add 1 and 1 to get 2.
6a
Subtract 2 from 2 to get 0.