Evaluate
\frac{\left(12a-b\right)\left(6a+b\right)}{6}
Expand
ab-\frac{b^{2}}{6}+12a^{2}
Share
Copied to clipboard
\left(\frac{2\times 3a}{2}+\frac{b}{2}\right)\left(4a-\frac{b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a times \frac{2}{2}.
\frac{2\times 3a+b}{2}\left(4a-\frac{b}{3}\right)
Since \frac{2\times 3a}{2} and \frac{b}{2} have the same denominator, add them by adding their numerators.
\frac{6a+b}{2}\left(4a-\frac{b}{3}\right)
Do the multiplications in 2\times 3a+b.
\frac{6a+b}{2}\left(\frac{3\times 4a}{3}-\frac{b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4a times \frac{3}{3}.
\frac{6a+b}{2}\times \frac{3\times 4a-b}{3}
Since \frac{3\times 4a}{3} and \frac{b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6a+b}{2}\times \frac{12a-b}{3}
Do the multiplications in 3\times 4a-b.
\frac{\left(6a+b\right)\left(12a-b\right)}{2\times 3}
Multiply \frac{6a+b}{2} times \frac{12a-b}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(6a+b\right)\left(12a-b\right)}{6}
Multiply 2 and 3 to get 6.
\frac{72a^{2}-6ab+12ba-b^{2}}{6}
Apply the distributive property by multiplying each term of 6a+b by each term of 12a-b.
\frac{72a^{2}+6ab-b^{2}}{6}
Combine -6ab and 12ba to get 6ab.
\left(\frac{2\times 3a}{2}+\frac{b}{2}\right)\left(4a-\frac{b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3a times \frac{2}{2}.
\frac{2\times 3a+b}{2}\left(4a-\frac{b}{3}\right)
Since \frac{2\times 3a}{2} and \frac{b}{2} have the same denominator, add them by adding their numerators.
\frac{6a+b}{2}\left(4a-\frac{b}{3}\right)
Do the multiplications in 2\times 3a+b.
\frac{6a+b}{2}\left(\frac{3\times 4a}{3}-\frac{b}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4a times \frac{3}{3}.
\frac{6a+b}{2}\times \frac{3\times 4a-b}{3}
Since \frac{3\times 4a}{3} and \frac{b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{6a+b}{2}\times \frac{12a-b}{3}
Do the multiplications in 3\times 4a-b.
\frac{\left(6a+b\right)\left(12a-b\right)}{2\times 3}
Multiply \frac{6a+b}{2} times \frac{12a-b}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(6a+b\right)\left(12a-b\right)}{6}
Multiply 2 and 3 to get 6.
\frac{72a^{2}-6ab+12ba-b^{2}}{6}
Apply the distributive property by multiplying each term of 6a+b by each term of 12a-b.
\frac{72a^{2}+6ab-b^{2}}{6}
Combine -6ab and 12ba to get 6ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}