Solve for y
y = \frac{\sqrt{15} + 3}{2} \approx 3.436491673
y=\frac{3-\sqrt{15}}{2}\approx -0.436491673
Graph
Share
Copied to clipboard
9-6y+y^{2}+y^{2}=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-y\right)^{2}.
9-6y+2y^{2}=12
Combine y^{2} and y^{2} to get 2y^{2}.
9-6y+2y^{2}-12=0
Subtract 12 from both sides.
-3-6y+2y^{2}=0
Subtract 12 from 9 to get -3.
2y^{2}-6y-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-3\right)}}{2\times 2}
Square -6.
y=\frac{-\left(-6\right)±\sqrt{36-8\left(-3\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-6\right)±\sqrt{36+24}}{2\times 2}
Multiply -8 times -3.
y=\frac{-\left(-6\right)±\sqrt{60}}{2\times 2}
Add 36 to 24.
y=\frac{-\left(-6\right)±2\sqrt{15}}{2\times 2}
Take the square root of 60.
y=\frac{6±2\sqrt{15}}{2\times 2}
The opposite of -6 is 6.
y=\frac{6±2\sqrt{15}}{4}
Multiply 2 times 2.
y=\frac{2\sqrt{15}+6}{4}
Now solve the equation y=\frac{6±2\sqrt{15}}{4} when ± is plus. Add 6 to 2\sqrt{15}.
y=\frac{\sqrt{15}+3}{2}
Divide 6+2\sqrt{15} by 4.
y=\frac{6-2\sqrt{15}}{4}
Now solve the equation y=\frac{6±2\sqrt{15}}{4} when ± is minus. Subtract 2\sqrt{15} from 6.
y=\frac{3-\sqrt{15}}{2}
Divide 6-2\sqrt{15} by 4.
y=\frac{\sqrt{15}+3}{2} y=\frac{3-\sqrt{15}}{2}
The equation is now solved.
9-6y+y^{2}+y^{2}=12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-y\right)^{2}.
9-6y+2y^{2}=12
Combine y^{2} and y^{2} to get 2y^{2}.
-6y+2y^{2}=12-9
Subtract 9 from both sides.
-6y+2y^{2}=3
Subtract 9 from 12 to get 3.
2y^{2}-6y=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2y^{2}-6y}{2}=\frac{3}{2}
Divide both sides by 2.
y^{2}+\left(-\frac{6}{2}\right)y=\frac{3}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-3y=\frac{3}{2}
Divide -6 by 2.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=\frac{15}{4}
Add \frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{3}{2}\right)^{2}=\frac{15}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{\sqrt{15}}{2} y-\frac{3}{2}=-\frac{\sqrt{15}}{2}
Simplify.
y=\frac{\sqrt{15}+3}{2} y=\frac{3-\sqrt{15}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}