Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

9-6t+t^{2}+\left(4-t\right)^{2}+1+t^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-t\right)^{2}.
9-6t+t^{2}+16-8t+t^{2}+1+t^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-t\right)^{2}.
25-6t+t^{2}-8t+t^{2}+1+t^{2}=16
Add 9 and 16 to get 25.
25-14t+t^{2}+t^{2}+1+t^{2}=16
Combine -6t and -8t to get -14t.
25-14t+2t^{2}+1+t^{2}=16
Combine t^{2} and t^{2} to get 2t^{2}.
26-14t+2t^{2}+t^{2}=16
Add 25 and 1 to get 26.
26-14t+3t^{2}=16
Combine 2t^{2} and t^{2} to get 3t^{2}.
26-14t+3t^{2}-16=0
Subtract 16 from both sides.
10-14t+3t^{2}=0
Subtract 16 from 26 to get 10.
3t^{2}-14t+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\times 10}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -14 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-14\right)±\sqrt{196-4\times 3\times 10}}{2\times 3}
Square -14.
t=\frac{-\left(-14\right)±\sqrt{196-12\times 10}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-14\right)±\sqrt{196-120}}{2\times 3}
Multiply -12 times 10.
t=\frac{-\left(-14\right)±\sqrt{76}}{2\times 3}
Add 196 to -120.
t=\frac{-\left(-14\right)±2\sqrt{19}}{2\times 3}
Take the square root of 76.
t=\frac{14±2\sqrt{19}}{2\times 3}
The opposite of -14 is 14.
t=\frac{14±2\sqrt{19}}{6}
Multiply 2 times 3.
t=\frac{2\sqrt{19}+14}{6}
Now solve the equation t=\frac{14±2\sqrt{19}}{6} when ± is plus. Add 14 to 2\sqrt{19}.
t=\frac{\sqrt{19}+7}{3}
Divide 14+2\sqrt{19} by 6.
t=\frac{14-2\sqrt{19}}{6}
Now solve the equation t=\frac{14±2\sqrt{19}}{6} when ± is minus. Subtract 2\sqrt{19} from 14.
t=\frac{7-\sqrt{19}}{3}
Divide 14-2\sqrt{19} by 6.
t=\frac{\sqrt{19}+7}{3} t=\frac{7-\sqrt{19}}{3}
The equation is now solved.
9-6t+t^{2}+\left(4-t\right)^{2}+1+t^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-t\right)^{2}.
9-6t+t^{2}+16-8t+t^{2}+1+t^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-t\right)^{2}.
25-6t+t^{2}-8t+t^{2}+1+t^{2}=16
Add 9 and 16 to get 25.
25-14t+t^{2}+t^{2}+1+t^{2}=16
Combine -6t and -8t to get -14t.
25-14t+2t^{2}+1+t^{2}=16
Combine t^{2} and t^{2} to get 2t^{2}.
26-14t+2t^{2}+t^{2}=16
Add 25 and 1 to get 26.
26-14t+3t^{2}=16
Combine 2t^{2} and t^{2} to get 3t^{2}.
-14t+3t^{2}=16-26
Subtract 26 from both sides.
-14t+3t^{2}=-10
Subtract 26 from 16 to get -10.
3t^{2}-14t=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3t^{2}-14t}{3}=-\frac{10}{3}
Divide both sides by 3.
t^{2}-\frac{14}{3}t=-\frac{10}{3}
Dividing by 3 undoes the multiplication by 3.
t^{2}-\frac{14}{3}t+\left(-\frac{7}{3}\right)^{2}=-\frac{10}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{14}{3}t+\frac{49}{9}=-\frac{10}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{14}{3}t+\frac{49}{9}=\frac{19}{9}
Add -\frac{10}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{7}{3}\right)^{2}=\frac{19}{9}
Factor t^{2}-\frac{14}{3}t+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{7}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Take the square root of both sides of the equation.
t-\frac{7}{3}=\frac{\sqrt{19}}{3} t-\frac{7}{3}=-\frac{\sqrt{19}}{3}
Simplify.
t=\frac{\sqrt{19}+7}{3} t=\frac{7-\sqrt{19}}{3}
Add \frac{7}{3} to both sides of the equation.