Evaluate
\frac{9}{2}+\frac{7}{2}i=4.5+3.5i
Real Part
\frac{9}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
3\times 1+3\times \left(\frac{3}{2}i\right)-i-\frac{3}{2}i^{2}
Multiply complex numbers 3-i and 1+\frac{3}{2}i like you multiply binomials.
3\times 1+3\times \left(\frac{3}{2}i\right)-i-\frac{3}{2}\left(-1\right)
By definition, i^{2} is -1.
3+\frac{9}{2}i-i+\frac{3}{2}
Do the multiplications.
3+\frac{3}{2}+\left(\frac{9}{2}-1\right)i
Combine the real and imaginary parts.
\frac{9}{2}+\frac{7}{2}i
Do the additions.
Re(3\times 1+3\times \left(\frac{3}{2}i\right)-i-\frac{3}{2}i^{2})
Multiply complex numbers 3-i and 1+\frac{3}{2}i like you multiply binomials.
Re(3\times 1+3\times \left(\frac{3}{2}i\right)-i-\frac{3}{2}\left(-1\right))
By definition, i^{2} is -1.
Re(3+\frac{9}{2}i-i+\frac{3}{2})
Do the multiplications in 3\times 1+3\times \left(\frac{3}{2}i\right)-i-\frac{3}{2}\left(-1\right).
Re(3+\frac{3}{2}+\left(\frac{9}{2}-1\right)i)
Combine the real and imaginary parts in 3+\frac{9}{2}i-i+\frac{3}{2}.
Re(\frac{9}{2}+\frac{7}{2}i)
Do the additions in 3+\frac{3}{2}+\left(\frac{9}{2}-1\right)i.
\frac{9}{2}
The real part of \frac{9}{2}+\frac{7}{2}i is \frac{9}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}