Solve for x (complex solution)
x=\frac{25+\sqrt{911}i}{24}\approx 1.041666667+1.257615689i
x=\frac{-\sqrt{911}i+25}{24}\approx 1.041666667-1.257615689i
Graph
Share
Copied to clipboard
-14-6x=\left(4-3x\right)\left(5-4x\right)-2
Subtract 17 from 3 to get -14.
-14-6x=20-31x+12x^{2}-2
Use the distributive property to multiply 4-3x by 5-4x and combine like terms.
-14-6x=18-31x+12x^{2}
Subtract 2 from 20 to get 18.
-14-6x-18=-31x+12x^{2}
Subtract 18 from both sides.
-32-6x=-31x+12x^{2}
Subtract 18 from -14 to get -32.
-32-6x+31x=12x^{2}
Add 31x to both sides.
-32+25x=12x^{2}
Combine -6x and 31x to get 25x.
-32+25x-12x^{2}=0
Subtract 12x^{2} from both sides.
-12x^{2}+25x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-12\right)\left(-32\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 25 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-12\right)\left(-32\right)}}{2\left(-12\right)}
Square 25.
x=\frac{-25±\sqrt{625+48\left(-32\right)}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-25±\sqrt{625-1536}}{2\left(-12\right)}
Multiply 48 times -32.
x=\frac{-25±\sqrt{-911}}{2\left(-12\right)}
Add 625 to -1536.
x=\frac{-25±\sqrt{911}i}{2\left(-12\right)}
Take the square root of -911.
x=\frac{-25±\sqrt{911}i}{-24}
Multiply 2 times -12.
x=\frac{-25+\sqrt{911}i}{-24}
Now solve the equation x=\frac{-25±\sqrt{911}i}{-24} when ± is plus. Add -25 to i\sqrt{911}.
x=\frac{-\sqrt{911}i+25}{24}
Divide -25+i\sqrt{911} by -24.
x=\frac{-\sqrt{911}i-25}{-24}
Now solve the equation x=\frac{-25±\sqrt{911}i}{-24} when ± is minus. Subtract i\sqrt{911} from -25.
x=\frac{25+\sqrt{911}i}{24}
Divide -25-i\sqrt{911} by -24.
x=\frac{-\sqrt{911}i+25}{24} x=\frac{25+\sqrt{911}i}{24}
The equation is now solved.
-14-6x=\left(4-3x\right)\left(5-4x\right)-2
Subtract 17 from 3 to get -14.
-14-6x=20-31x+12x^{2}-2
Use the distributive property to multiply 4-3x by 5-4x and combine like terms.
-14-6x=18-31x+12x^{2}
Subtract 2 from 20 to get 18.
-14-6x+31x=18+12x^{2}
Add 31x to both sides.
-14+25x=18+12x^{2}
Combine -6x and 31x to get 25x.
-14+25x-12x^{2}=18
Subtract 12x^{2} from both sides.
25x-12x^{2}=18+14
Add 14 to both sides.
25x-12x^{2}=32
Add 18 and 14 to get 32.
-12x^{2}+25x=32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-12x^{2}+25x}{-12}=\frac{32}{-12}
Divide both sides by -12.
x^{2}+\frac{25}{-12}x=\frac{32}{-12}
Dividing by -12 undoes the multiplication by -12.
x^{2}-\frac{25}{12}x=\frac{32}{-12}
Divide 25 by -12.
x^{2}-\frac{25}{12}x=-\frac{8}{3}
Reduce the fraction \frac{32}{-12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{25}{12}x+\left(-\frac{25}{24}\right)^{2}=-\frac{8}{3}+\left(-\frac{25}{24}\right)^{2}
Divide -\frac{25}{12}, the coefficient of the x term, by 2 to get -\frac{25}{24}. Then add the square of -\frac{25}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{25}{12}x+\frac{625}{576}=-\frac{8}{3}+\frac{625}{576}
Square -\frac{25}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{25}{12}x+\frac{625}{576}=-\frac{911}{576}
Add -\frac{8}{3} to \frac{625}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{25}{24}\right)^{2}=-\frac{911}{576}
Factor x^{2}-\frac{25}{12}x+\frac{625}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{24}\right)^{2}}=\sqrt{-\frac{911}{576}}
Take the square root of both sides of the equation.
x-\frac{25}{24}=\frac{\sqrt{911}i}{24} x-\frac{25}{24}=-\frac{\sqrt{911}i}{24}
Simplify.
x=\frac{25+\sqrt{911}i}{24} x=\frac{-\sqrt{911}i+25}{24}
Add \frac{25}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}