Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3-5i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+5i.
\frac{\left(3-5i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3-5i\right)\left(2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5i^{2}}{29}
Multiply complex numbers 3-5i and 2+5i like you multiply binomials.
\frac{3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{6+15i-10i+25}{29}
Do the multiplications in 3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5\left(-1\right).
\frac{6+25+\left(15-10\right)i}{29}
Combine the real and imaginary parts in 6+15i-10i+25.
\frac{31+5i}{29}
Do the additions in 6+25+\left(15-10\right)i.
\frac{31}{29}+\frac{5}{29}i
Divide 31+5i by 29 to get \frac{31}{29}+\frac{5}{29}i.
Re(\frac{\left(3-5i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)})
Multiply both numerator and denominator of \frac{3-5i}{2-5i} by the complex conjugate of the denominator, 2+5i.
Re(\frac{\left(3-5i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3-5i\right)\left(2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5i^{2}}{29})
Multiply complex numbers 3-5i and 2+5i like you multiply binomials.
Re(\frac{3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{6+15i-10i+25}{29})
Do the multiplications in 3\times 2+3\times \left(5i\right)-5i\times 2-5\times 5\left(-1\right).
Re(\frac{6+25+\left(15-10\right)i}{29})
Combine the real and imaginary parts in 6+15i-10i+25.
Re(\frac{31+5i}{29})
Do the additions in 6+25+\left(15-10\right)i.
Re(\frac{31}{29}+\frac{5}{29}i)
Divide 31+5i by 29 to get \frac{31}{29}+\frac{5}{29}i.
\frac{31}{29}
The real part of \frac{31}{29}+\frac{5}{29}i is \frac{31}{29}.