Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

9-\left(4y\right)^{2}-\left(3+4y\right)^{2}
Consider \left(3-4y\right)\left(3+4y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9-4^{2}y^{2}-\left(3+4y\right)^{2}
Expand \left(4y\right)^{2}.
9-16y^{2}-\left(3+4y\right)^{2}
Calculate 4 to the power of 2 and get 16.
9-16y^{2}-\left(9+24y+16y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+4y\right)^{2}.
9-16y^{2}-9-24y-16y^{2}
To find the opposite of 9+24y+16y^{2}, find the opposite of each term.
-16y^{2}-24y-16y^{2}
Subtract 9 from 9 to get 0.
-32y^{2}-24y
Combine -16y^{2} and -16y^{2} to get -32y^{2}.
9-\left(4y\right)^{2}-\left(3+4y\right)^{2}
Consider \left(3-4y\right)\left(3+4y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9-4^{2}y^{2}-\left(3+4y\right)^{2}
Expand \left(4y\right)^{2}.
9-16y^{2}-\left(3+4y\right)^{2}
Calculate 4 to the power of 2 and get 16.
9-16y^{2}-\left(9+24y+16y^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+4y\right)^{2}.
9-16y^{2}-9-24y-16y^{2}
To find the opposite of 9+24y+16y^{2}, find the opposite of each term.
-16y^{2}-24y-16y^{2}
Subtract 9 from 9 to get 0.
-32y^{2}-24y
Combine -16y^{2} and -16y^{2} to get -32y^{2}.