Solve for x
x=\left(\frac{4}{5}+\frac{3}{5}i\right)y+\left(-\frac{9}{5}+\frac{2}{5}i\right)
Solve for y
y=\left(\frac{4}{5}-\frac{3}{5}i\right)x+\left(\frac{6}{5}-\frac{7}{5}i\right)
Share
Copied to clipboard
\left(3-2i\right)\left(x-yi\right)=2\left(x-2iy\right)+4i-1
Multiply 2 and i to get 2i.
\left(3-2i\right)\left(x-yi\right)-2\left(x-2iy\right)=4i-1
Subtract 2\left(x-2iy\right) from both sides.
\left(3-2i\right)\left(x-iy\right)-2\left(x-2iy\right)=4i-1
Multiply -1 and i to get -i.
\left(3-2i\right)x+\left(-2-3i\right)y-2\left(x-2iy\right)=4i-1
Use the distributive property to multiply 3-2i by x-iy.
\left(3-2i\right)x+\left(-2-3i\right)y-2x+4iy=4i-1
Use the distributive property to multiply -2 by x-2iy.
\left(1-2i\right)x+\left(-2-3i\right)y+4iy=4i-1
Combine \left(3-2i\right)x and -2x to get \left(1-2i\right)x.
\left(1-2i\right)x+\left(-2+i\right)y=4i-1
Combine \left(-2-3i\right)y and 4iy to get \left(-2+i\right)y.
\left(1-2i\right)x=4i-1-\left(-2+i\right)y
Subtract \left(-2+i\right)y from both sides.
\left(1-2i\right)x=\left(2-i\right)y+\left(-1+4i\right)
The equation is in standard form.
\frac{\left(1-2i\right)x}{1-2i}=\frac{\left(2-i\right)y+\left(-1+4i\right)}{1-2i}
Divide both sides by 1-2i.
x=\frac{\left(2-i\right)y+\left(-1+4i\right)}{1-2i}
Dividing by 1-2i undoes the multiplication by 1-2i.
x=\left(\frac{4}{5}+\frac{3}{5}i\right)y+\left(-\frac{9}{5}+\frac{2}{5}i\right)
Divide -1+4i+\left(2-i\right)y by 1-2i.
\left(3-2i\right)\left(x-yi\right)=2\left(x-2iy\right)+4i-1
Multiply 2 and i to get 2i.
\left(3-2i\right)\left(x-yi\right)-2\left(x-2iy\right)=4i-1
Subtract 2\left(x-2iy\right) from both sides.
\left(3-2i\right)\left(x-iy\right)-2\left(x-2iy\right)=4i-1
Multiply -1 and i to get -i.
\left(3-2i\right)x+\left(-2-3i\right)y-2\left(x-2iy\right)=4i-1
Use the distributive property to multiply 3-2i by x-iy.
\left(3-2i\right)x+\left(-2-3i\right)y-2x+4iy=4i-1
Use the distributive property to multiply -2 by x-2iy.
\left(1-2i\right)x+\left(-2-3i\right)y+4iy=4i-1
Combine \left(3-2i\right)x and -2x to get \left(1-2i\right)x.
\left(1-2i\right)x+\left(-2+i\right)y=4i-1
Combine \left(-2-3i\right)y and 4iy to get \left(-2+i\right)y.
\left(-2+i\right)y=4i-1-\left(1-2i\right)x
Subtract \left(1-2i\right)x from both sides.
\left(-2+i\right)y=\left(-1+2i\right)x+\left(-1+4i\right)
The equation is in standard form.
\frac{\left(-2+i\right)y}{-2+i}=\frac{\left(-1+2i\right)x+\left(-1+4i\right)}{-2+i}
Divide both sides by -2+i.
y=\frac{\left(-1+2i\right)x+\left(-1+4i\right)}{-2+i}
Dividing by -2+i undoes the multiplication by -2+i.
y=\left(\frac{4}{5}-\frac{3}{5}i\right)x+\left(\frac{6}{5}-\frac{7}{5}i\right)
Divide -1+4i+\left(-1+2i\right)x by -2+i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}