Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

-9-46i+\frac{1-i}{-1+i^{19}}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Calculate 3-2i to the power of 3 and get -9-46i.
-9-46i+\frac{1-i}{-1-i}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Calculate i to the power of 19 and get -i.
-9-46i+\frac{\left(1-i\right)\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Multiply both numerator and denominator of \frac{1-i}{-1-i} by the complex conjugate of the denominator, -1+i.
-9-46i+\frac{2i}{2}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Do the multiplications in \frac{\left(1-i\right)\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}.
-9-46i+i-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Divide 2i by 2 to get i.
-\frac{3\left(2+i\right)}{2-i}-9-45i-\left(2+i\right)\left(2-i\right)
Do the additions in -9-46i+i.
-\frac{3\left(2+i\right)}{2-i}-9-45i-5
Multiply 2+i and 2-i to get 5.
-\frac{3\left(2+i\right)}{2-i}-14-45i
Do the additions.
-\frac{6+3i}{2-i}-14-45i
Multiply 3 and 2+i to get 6+3i.
-\frac{\left(6+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}-14-45i
Multiply both numerator and denominator of \frac{6+3i}{2-i} by the complex conjugate of the denominator, 2+i.
-\frac{9+12i}{5}-14-45i
Do the multiplications in \frac{\left(6+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
-\frac{9}{5}-\frac{12}{5}i-14-45i
Divide 9+12i by 5 to get \frac{9}{5}+\frac{12}{5}i.
-\frac{79}{5}-\frac{237}{5}i
Do the additions.
Re(-9-46i+\frac{1-i}{-1+i^{19}}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Calculate 3-2i to the power of 3 and get -9-46i.
Re(-9-46i+\frac{1-i}{-1-i}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Calculate i to the power of 19 and get -i.
Re(-9-46i+\frac{\left(1-i\right)\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Multiply both numerator and denominator of \frac{1-i}{-1-i} by the complex conjugate of the denominator, -1+i.
Re(-9-46i+\frac{2i}{2}-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Do the multiplications in \frac{\left(1-i\right)\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}.
Re(-9-46i+i-\frac{3\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Divide 2i by 2 to get i.
Re(-\frac{3\left(2+i\right)}{2-i}-9-45i-\left(2+i\right)\left(2-i\right))
Do the additions in -9-46i+i.
Re(-\frac{3\left(2+i\right)}{2-i}-9-45i-5)
Multiply 2+i and 2-i to get 5.
Re(-\frac{3\left(2+i\right)}{2-i}-14-45i)
Do the additions in -9-45i-5.
Re(-\frac{6+3i}{2-i}-14-45i)
Multiply 3 and 2+i to get 6+3i.
Re(-\frac{\left(6+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}-14-45i)
Multiply both numerator and denominator of \frac{6+3i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(-\frac{9+12i}{5}-14-45i)
Do the multiplications in \frac{\left(6+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(-\frac{9}{5}-\frac{12}{5}i-14-45i)
Divide 9+12i by 5 to get \frac{9}{5}+\frac{12}{5}i.
Re(-\frac{79}{5}-\frac{237}{5}i)
Do the additions in -\frac{9}{5}-\frac{12}{5}i-14-45i.
-\frac{79}{5}
The real part of -\frac{79}{5}-\frac{237}{5}i is -\frac{79}{5}.