Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

-9-46i+\frac{1}{-1+i^{19}}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Calculate 3-2i to the power of 3 and get -9-46i.
-9-46i+\frac{1}{-1-i}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Calculate i to the power of 19 and get -i.
-9-46i+\frac{1\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Multiply both numerator and denominator of \frac{1}{-1-i} by the complex conjugate of the denominator, -1+i.
-9-46i+\frac{-1+i}{2}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Do the multiplications in \frac{1\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}.
-9-46i+\left(-\frac{1}{2}+\frac{1}{2}i\right)-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right)
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{9\left(2+i\right)}{2-i}-\frac{19}{2}-\frac{91}{2}i-\left(2+i\right)\left(2-i\right)
Do the additions in -9-46i+\left(-\frac{1}{2}+\frac{1}{2}i\right).
-\frac{9\left(2+i\right)}{2-i}-\frac{19}{2}-\frac{91}{2}i-5
Multiply 2+i and 2-i to get 5.
-\frac{9\left(2+i\right)}{2-i}-\frac{29}{2}-\frac{91}{2}i
Do the additions.
-\frac{18+9i}{2-i}-\frac{29}{2}-\frac{91}{2}i
Multiply 9 and 2+i to get 18+9i.
-\frac{\left(18+9i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}-\frac{29}{2}-\frac{91}{2}i
Multiply both numerator and denominator of \frac{18+9i}{2-i} by the complex conjugate of the denominator, 2+i.
-\frac{27+36i}{5}-\frac{29}{2}-\frac{91}{2}i
Do the multiplications in \frac{\left(18+9i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
-\frac{27}{5}-\frac{36}{5}i-\frac{29}{2}-\frac{91}{2}i
Divide 27+36i by 5 to get \frac{27}{5}+\frac{36}{5}i.
-\frac{199}{10}-\frac{527}{10}i
Do the additions.
Re(-9-46i+\frac{1}{-1+i^{19}}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Calculate 3-2i to the power of 3 and get -9-46i.
Re(-9-46i+\frac{1}{-1-i}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Calculate i to the power of 19 and get -i.
Re(-9-46i+\frac{1\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Multiply both numerator and denominator of \frac{1}{-1-i} by the complex conjugate of the denominator, -1+i.
Re(-9-46i+\frac{-1+i}{2}-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Do the multiplications in \frac{1\left(-1+i\right)}{\left(-1-i\right)\left(-1+i\right)}.
Re(-9-46i+\left(-\frac{1}{2}+\frac{1}{2}i\right)-\frac{9\left(2+i\right)}{2-i}-\left(2+i\right)\left(2-i\right))
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(-\frac{9\left(2+i\right)}{2-i}-\frac{19}{2}-\frac{91}{2}i-\left(2+i\right)\left(2-i\right))
Do the additions in -9-46i+\left(-\frac{1}{2}+\frac{1}{2}i\right).
Re(-\frac{9\left(2+i\right)}{2-i}-\frac{19}{2}-\frac{91}{2}i-5)
Multiply 2+i and 2-i to get 5.
Re(-\frac{9\left(2+i\right)}{2-i}-\frac{29}{2}-\frac{91}{2}i)
Do the additions in -\frac{19}{2}-\frac{91}{2}i-5.
Re(-\frac{18+9i}{2-i}-\frac{29}{2}-\frac{91}{2}i)
Multiply 9 and 2+i to get 18+9i.
Re(-\frac{\left(18+9i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}-\frac{29}{2}-\frac{91}{2}i)
Multiply both numerator and denominator of \frac{18+9i}{2-i} by the complex conjugate of the denominator, 2+i.
Re(-\frac{27+36i}{5}-\frac{29}{2}-\frac{91}{2}i)
Do the multiplications in \frac{\left(18+9i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}.
Re(-\frac{27}{5}-\frac{36}{5}i-\frac{29}{2}-\frac{91}{2}i)
Divide 27+36i by 5 to get \frac{27}{5}+\frac{36}{5}i.
Re(-\frac{199}{10}-\frac{527}{10}i)
Do the additions in -\frac{27}{5}-\frac{36}{5}i-\frac{29}{2}-\frac{91}{2}i.
-\frac{199}{10}
The real part of -\frac{199}{10}-\frac{527}{10}i is -\frac{199}{10}.