Evaluate
4\sqrt{6}+12\sqrt{2}-2\sqrt{3}\approx 23.304420104
Expand
4 \sqrt{6} + 12 \sqrt{2} - 2 \sqrt{3} = 23.304420104
Share
Copied to clipboard
\left(2+2\sqrt{2}\right)^{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Subtract 1 from 3 to get 2.
4+8\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2\sqrt{2}\right)^{2}.
4+8\sqrt{2}+4\times 2-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
4+8\sqrt{2}+8-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Multiply 4 and 2 to get 8.
12+8\sqrt{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Add 4 and 8 to get 12.
12+8\sqrt{2}-\left(-4\sqrt{2}\sqrt{3}+4\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
Square \sqrt{3}+1-2\sqrt{2}.
12+8\sqrt{2}-\left(-4\sqrt{6}+4\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
12+8\sqrt{2}-\left(-4\sqrt{6}+4\times 2+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
The square of \sqrt{2} is 2.
12+8\sqrt{2}-\left(-4\sqrt{6}+8+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
Multiply 4 and 2 to get 8.
12+8\sqrt{2}-\left(-4\sqrt{6}+8+3-4\sqrt{2}+2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
12+8\sqrt{2}-\left(-4\sqrt{6}+11-4\sqrt{2}+2\sqrt{3}+1\right)
Add 8 and 3 to get 11.
12+8\sqrt{2}-\left(-4\sqrt{6}+12-4\sqrt{2}+2\sqrt{3}\right)
Add 11 and 1 to get 12.
12+8\sqrt{2}+4\sqrt{6}-12+4\sqrt{2}-2\sqrt{3}
To find the opposite of -4\sqrt{6}+12-4\sqrt{2}+2\sqrt{3}, find the opposite of each term.
8\sqrt{2}+4\sqrt{6}+4\sqrt{2}-2\sqrt{3}
Subtract 12 from 12 to get 0.
12\sqrt{2}+4\sqrt{6}-2\sqrt{3}
Combine 8\sqrt{2} and 4\sqrt{2} to get 12\sqrt{2}.
\left(2+2\sqrt{2}\right)^{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Subtract 1 from 3 to get 2.
4+8\sqrt{2}+4\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2\sqrt{2}\right)^{2}.
4+8\sqrt{2}+4\times 2-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
4+8\sqrt{2}+8-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Multiply 4 and 2 to get 8.
12+8\sqrt{2}-\left(\sqrt{3}+1-2\sqrt{2}\right)^{2}
Add 4 and 8 to get 12.
12+8\sqrt{2}-\left(-4\sqrt{2}\sqrt{3}+4\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
Square \sqrt{3}+1-2\sqrt{2}.
12+8\sqrt{2}-\left(-4\sqrt{6}+4\left(\sqrt{2}\right)^{2}+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
12+8\sqrt{2}-\left(-4\sqrt{6}+4\times 2+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
The square of \sqrt{2} is 2.
12+8\sqrt{2}-\left(-4\sqrt{6}+8+\left(\sqrt{3}\right)^{2}-4\sqrt{2}+2\sqrt{3}+1\right)
Multiply 4 and 2 to get 8.
12+8\sqrt{2}-\left(-4\sqrt{6}+8+3-4\sqrt{2}+2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
12+8\sqrt{2}-\left(-4\sqrt{6}+11-4\sqrt{2}+2\sqrt{3}+1\right)
Add 8 and 3 to get 11.
12+8\sqrt{2}-\left(-4\sqrt{6}+12-4\sqrt{2}+2\sqrt{3}\right)
Add 11 and 1 to get 12.
12+8\sqrt{2}+4\sqrt{6}-12+4\sqrt{2}-2\sqrt{3}
To find the opposite of -4\sqrt{6}+12-4\sqrt{2}+2\sqrt{3}, find the opposite of each term.
8\sqrt{2}+4\sqrt{6}+4\sqrt{2}-2\sqrt{3}
Subtract 12 from 12 to get 0.
12\sqrt{2}+4\sqrt{6}-2\sqrt{3}
Combine 8\sqrt{2} and 4\sqrt{2} to get 12\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}