Solve for k
k=15\sqrt{2}+18\approx 39.213203436
Quiz
Linear Equation
5 problems similar to:
( 3 - \sqrt { 2 } ) ( \frac { k } { \sqrt { 2 } } - 3 ) = k
Share
Copied to clipboard
\left(3-\sqrt{2}\right)\left(\frac{k\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\right)=k
Rationalize the denominator of \frac{k}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(3-\sqrt{2}\right)\left(\frac{k\sqrt{2}}{2}-3\right)=k
The square of \sqrt{2} is 2.
3\times \frac{k\sqrt{2}}{2}-9-\sqrt{2}\times \frac{k\sqrt{2}}{2}+3\sqrt{2}=k
Apply the distributive property by multiplying each term of 3-\sqrt{2} by each term of \frac{k\sqrt{2}}{2}-3.
\frac{3k\sqrt{2}}{2}-9-\sqrt{2}\times \frac{k\sqrt{2}}{2}+3\sqrt{2}=k
Express 3\times \frac{k\sqrt{2}}{2} as a single fraction.
\frac{3k\sqrt{2}}{2}-9-\frac{\sqrt{2}k\sqrt{2}}{2}+3\sqrt{2}=k
Express \sqrt{2}\times \frac{k\sqrt{2}}{2} as a single fraction.
\frac{3k\sqrt{2}-\sqrt{2}k\sqrt{2}}{2}-9+3\sqrt{2}=k
Since \frac{3k\sqrt{2}}{2} and \frac{\sqrt{2}k\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3k\sqrt{2}-2k}{2}-9+3\sqrt{2}=k
Do the multiplications in 3k\sqrt{2}-\sqrt{2}k\sqrt{2}.
\frac{3k\sqrt{2}-2k}{2}-9+3\sqrt{2}-k=0
Subtract k from both sides.
\frac{3k\sqrt{2}-2k}{2}+3\sqrt{2}-k=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{3k\sqrt{2}-2k}{2}-k=9-3\sqrt{2}
Subtract 3\sqrt{2} from both sides.
3k\sqrt{2}-2k-2k=18-6\sqrt{2}
Multiply both sides of the equation by 2.
3\sqrt{2}k-2k-2k=-6\sqrt{2}+18
Reorder the terms.
3\sqrt{2}k-4k=-6\sqrt{2}+18
Combine -2k and -2k to get -4k.
\left(3\sqrt{2}-4\right)k=-6\sqrt{2}+18
Combine all terms containing k.
\left(3\sqrt{2}-4\right)k=18-6\sqrt{2}
The equation is in standard form.
\frac{\left(3\sqrt{2}-4\right)k}{3\sqrt{2}-4}=\frac{18-6\sqrt{2}}{3\sqrt{2}-4}
Divide both sides by 3\sqrt{2}-4.
k=\frac{18-6\sqrt{2}}{3\sqrt{2}-4}
Dividing by 3\sqrt{2}-4 undoes the multiplication by 3\sqrt{2}-4.
k=15\sqrt{2}+18
Divide -6\sqrt{2}+18 by 3\sqrt{2}-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}