Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(9-6\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(3+\sqrt{2}\right)+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{2}\right)^{2}.
\left(9-6\sqrt{2}+2\right)\left(3+\sqrt{2}\right)+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
The square of \sqrt{2} is 2.
\left(11-6\sqrt{2}\right)\left(3+\sqrt{2}\right)+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
Add 9 and 2 to get 11.
33-7\sqrt{2}-6\left(\sqrt{2}\right)^{2}+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
Use the distributive property to multiply 11-6\sqrt{2} by 3+\sqrt{2} and combine like terms.
33-7\sqrt{2}-6\times 2+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
The square of \sqrt{2} is 2.
33-7\sqrt{2}-12+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
Multiply -6 and 2 to get -12.
21-7\sqrt{2}+\left(3+\sqrt{2}\right)^{2}\left(3-\sqrt{2}\right)
Subtract 12 from 33 to get 21.
21-7\sqrt{2}+\left(9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(3-\sqrt{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{2}\right)^{2}.
21-7\sqrt{2}+\left(9+6\sqrt{2}+2\right)\left(3-\sqrt{2}\right)
The square of \sqrt{2} is 2.
21-7\sqrt{2}+\left(11+6\sqrt{2}\right)\left(3-\sqrt{2}\right)
Add 9 and 2 to get 11.
21-7\sqrt{2}+33+7\sqrt{2}-6\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 11+6\sqrt{2} by 3-\sqrt{2} and combine like terms.
21-7\sqrt{2}+33+7\sqrt{2}-6\times 2
The square of \sqrt{2} is 2.
21-7\sqrt{2}+33+7\sqrt{2}-12
Multiply -6 and 2 to get -12.
21-7\sqrt{2}+21+7\sqrt{2}
Subtract 12 from 33 to get 21.
42-7\sqrt{2}+7\sqrt{2}
Add 21 and 21 to get 42.
42
Combine -7\sqrt{2} and 7\sqrt{2} to get 0.