Solve for x
x=15
Graph
Share
Copied to clipboard
6\left(3-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
18+6\left(-\frac{x}{2}\right)-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Use the distributive property to multiply 6 by 3-\frac{x}{2}.
18-3x-6\left(1-\frac{x}{3}\right)=42-6\left(x-\frac{x}{2}\right)
Cancel out 2, the greatest common factor in 6 and 2.
18-3x-6\left(1-\frac{x}{3}\right)=42-6\times \frac{1}{2}x
Combine x and -\frac{x}{2} to get \frac{1}{2}x.
18-3x-6\left(1-\frac{x}{3}\right)=42-\frac{6}{2}x
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
18-3x-6\left(1-\frac{x}{3}\right)=42-3x
Divide 6 by 2 to get 3.
18-3x-6\left(1-\frac{x}{3}\right)+3x=42
Add 3x to both sides.
3\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+9x=126
Multiply both sides of the equation by 3.
9\left(18-3x-6\left(1-\frac{x}{3}\right)\right)+27x=378
Multiply both sides of the equation by 3.
9\left(18-3x-6+6\times \frac{x}{3}\right)+27x=378
Use the distributive property to multiply -6 by 1-\frac{x}{3}.
9\left(18-3x-6+2x\right)+27x=378
Cancel out 3, the greatest common factor in 6 and 3.
9\left(12-3x+2x\right)+27x=378
Subtract 6 from 18 to get 12.
9\left(12-x\right)+27x=378
Combine -3x and 2x to get -x.
108-9x+27x=378
Use the distributive property to multiply 9 by 12-x.
108+18x=378
Combine -9x and 27x to get 18x.
18x=378-108
Subtract 108 from both sides.
18x=270
Subtract 108 from 378 to get 270.
x=\frac{270}{18}
Divide both sides by 18.
x=15
Divide 270 by 18 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}