Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

3k^{2}=\frac{40\left(5^{2}-15\times 15\right)^{2}}{20^{3}\times 20}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
3k^{2}=\frac{40\left(5^{2}-15\times 15\right)^{2}}{20^{4}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
3k^{2}=\frac{40\left(25-15\times 15\right)^{2}}{20^{4}}
Calculate 5 to the power of 2 and get 25.
3k^{2}=\frac{40\left(25-225\right)^{2}}{20^{4}}
Multiply 15 and 15 to get 225.
3k^{2}=\frac{40\left(-200\right)^{2}}{20^{4}}
Subtract 225 from 25 to get -200.
3k^{2}=\frac{40\times 40000}{20^{4}}
Calculate -200 to the power of 2 and get 40000.
3k^{2}=\frac{1600000}{20^{4}}
Multiply 40 and 40000 to get 1600000.
3k^{2}=\frac{1600000}{160000}
Calculate 20 to the power of 4 and get 160000.
3k^{2}=10
Divide 1600000 by 160000 to get 10.
k^{2}=\frac{10}{3}
Divide both sides by 3.
k=\frac{\sqrt{30}}{3} k=-\frac{\sqrt{30}}{3}
Take the square root of both sides of the equation.
3k^{2}=\frac{40\left(5^{2}-15\times 15\right)^{2}}{20^{3}\times 20}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
3k^{2}=\frac{40\left(5^{2}-15\times 15\right)^{2}}{20^{4}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
3k^{2}=\frac{40\left(25-15\times 15\right)^{2}}{20^{4}}
Calculate 5 to the power of 2 and get 25.
3k^{2}=\frac{40\left(25-225\right)^{2}}{20^{4}}
Multiply 15 and 15 to get 225.
3k^{2}=\frac{40\left(-200\right)^{2}}{20^{4}}
Subtract 225 from 25 to get -200.
3k^{2}=\frac{40\times 40000}{20^{4}}
Calculate -200 to the power of 2 and get 40000.
3k^{2}=\frac{1600000}{20^{4}}
Multiply 40 and 40000 to get 1600000.
3k^{2}=\frac{1600000}{160000}
Calculate 20 to the power of 4 and get 160000.
3k^{2}=10
Divide 1600000 by 160000 to get 10.
3k^{2}-10=0
Subtract 10 from both sides.
k=\frac{0±\sqrt{0^{2}-4\times 3\left(-10\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 3\left(-10\right)}}{2\times 3}
Square 0.
k=\frac{0±\sqrt{-12\left(-10\right)}}{2\times 3}
Multiply -4 times 3.
k=\frac{0±\sqrt{120}}{2\times 3}
Multiply -12 times -10.
k=\frac{0±2\sqrt{30}}{2\times 3}
Take the square root of 120.
k=\frac{0±2\sqrt{30}}{6}
Multiply 2 times 3.
k=\frac{\sqrt{30}}{3}
Now solve the equation k=\frac{0±2\sqrt{30}}{6} when ± is plus.
k=-\frac{\sqrt{30}}{3}
Now solve the equation k=\frac{0±2\sqrt{30}}{6} when ± is minus.
k=\frac{\sqrt{30}}{3} k=-\frac{\sqrt{30}}{3}
The equation is now solved.