Solve for x
x = \frac{10 \sqrt{3} + 14}{13} \approx 2.409269852
x=\frac{14-10\sqrt{3}}{13}\approx -0.255423698
Graph
Share
Copied to clipboard
12\left(x-3\right)^{2}-25\left(x-2\right)^{2}=0
Multiply 3 and 4 to get 12.
12\left(x^{2}-6x+9\right)-25\left(x-2\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
12x^{2}-72x+108-25\left(x-2\right)^{2}=0
Use the distributive property to multiply 12 by x^{2}-6x+9.
12x^{2}-72x+108-25\left(x^{2}-4x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
12x^{2}-72x+108-25x^{2}+100x-100=0
Use the distributive property to multiply -25 by x^{2}-4x+4.
-13x^{2}-72x+108+100x-100=0
Combine 12x^{2} and -25x^{2} to get -13x^{2}.
-13x^{2}+28x+108-100=0
Combine -72x and 100x to get 28x.
-13x^{2}+28x+8=0
Subtract 100 from 108 to get 8.
x=\frac{-28±\sqrt{28^{2}-4\left(-13\right)\times 8}}{2\left(-13\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -13 for a, 28 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-13\right)\times 8}}{2\left(-13\right)}
Square 28.
x=\frac{-28±\sqrt{784+52\times 8}}{2\left(-13\right)}
Multiply -4 times -13.
x=\frac{-28±\sqrt{784+416}}{2\left(-13\right)}
Multiply 52 times 8.
x=\frac{-28±\sqrt{1200}}{2\left(-13\right)}
Add 784 to 416.
x=\frac{-28±20\sqrt{3}}{2\left(-13\right)}
Take the square root of 1200.
x=\frac{-28±20\sqrt{3}}{-26}
Multiply 2 times -13.
x=\frac{20\sqrt{3}-28}{-26}
Now solve the equation x=\frac{-28±20\sqrt{3}}{-26} when ± is plus. Add -28 to 20\sqrt{3}.
x=\frac{14-10\sqrt{3}}{13}
Divide -28+20\sqrt{3} by -26.
x=\frac{-20\sqrt{3}-28}{-26}
Now solve the equation x=\frac{-28±20\sqrt{3}}{-26} when ± is minus. Subtract 20\sqrt{3} from -28.
x=\frac{10\sqrt{3}+14}{13}
Divide -28-20\sqrt{3} by -26.
x=\frac{14-10\sqrt{3}}{13} x=\frac{10\sqrt{3}+14}{13}
The equation is now solved.
12\left(x-3\right)^{2}-25\left(x-2\right)^{2}=0
Multiply 3 and 4 to get 12.
12\left(x^{2}-6x+9\right)-25\left(x-2\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
12x^{2}-72x+108-25\left(x-2\right)^{2}=0
Use the distributive property to multiply 12 by x^{2}-6x+9.
12x^{2}-72x+108-25\left(x^{2}-4x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
12x^{2}-72x+108-25x^{2}+100x-100=0
Use the distributive property to multiply -25 by x^{2}-4x+4.
-13x^{2}-72x+108+100x-100=0
Combine 12x^{2} and -25x^{2} to get -13x^{2}.
-13x^{2}+28x+108-100=0
Combine -72x and 100x to get 28x.
-13x^{2}+28x+8=0
Subtract 100 from 108 to get 8.
-13x^{2}+28x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{-13x^{2}+28x}{-13}=-\frac{8}{-13}
Divide both sides by -13.
x^{2}+\frac{28}{-13}x=-\frac{8}{-13}
Dividing by -13 undoes the multiplication by -13.
x^{2}-\frac{28}{13}x=-\frac{8}{-13}
Divide 28 by -13.
x^{2}-\frac{28}{13}x=\frac{8}{13}
Divide -8 by -13.
x^{2}-\frac{28}{13}x+\left(-\frac{14}{13}\right)^{2}=\frac{8}{13}+\left(-\frac{14}{13}\right)^{2}
Divide -\frac{28}{13}, the coefficient of the x term, by 2 to get -\frac{14}{13}. Then add the square of -\frac{14}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{13}x+\frac{196}{169}=\frac{8}{13}+\frac{196}{169}
Square -\frac{14}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{13}x+\frac{196}{169}=\frac{300}{169}
Add \frac{8}{13} to \frac{196}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{13}\right)^{2}=\frac{300}{169}
Factor x^{2}-\frac{28}{13}x+\frac{196}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{13}\right)^{2}}=\sqrt{\frac{300}{169}}
Take the square root of both sides of the equation.
x-\frac{14}{13}=\frac{10\sqrt{3}}{13} x-\frac{14}{13}=-\frac{10\sqrt{3}}{13}
Simplify.
x=\frac{10\sqrt{3}+14}{13} x=\frac{14-10\sqrt{3}}{13}
Add \frac{14}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}