Evaluate
39\sqrt{3}\approx 67.549981495
Share
Copied to clipboard
9\sqrt{48}-9\sqrt{\frac{1}{3}}+3\sqrt{12}
Multiply 3 and 3 to get 9.
9\times 4\sqrt{3}-9\sqrt{\frac{1}{3}}+3\sqrt{12}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
36\sqrt{3}-9\sqrt{\frac{1}{3}}+3\sqrt{12}
Multiply 9 and 4 to get 36.
36\sqrt{3}-9\times \frac{\sqrt{1}}{\sqrt{3}}+3\sqrt{12}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
36\sqrt{3}-9\times \frac{1}{\sqrt{3}}+3\sqrt{12}
Calculate the square root of 1 and get 1.
36\sqrt{3}-9\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+3\sqrt{12}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
36\sqrt{3}-9\times \frac{\sqrt{3}}{3}+3\sqrt{12}
The square of \sqrt{3} is 3.
36\sqrt{3}-3\sqrt{3}+3\sqrt{12}
Cancel out 3, the greatest common factor in 9 and 3.
33\sqrt{3}+3\sqrt{12}
Combine 36\sqrt{3} and -3\sqrt{3} to get 33\sqrt{3}.
33\sqrt{3}+3\times 2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
33\sqrt{3}+6\sqrt{3}
Multiply 3 and 2 to get 6.
39\sqrt{3}
Combine 33\sqrt{3} and 6\sqrt{3} to get 39\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}