Evaluate
\frac{104\sqrt{3}}{9}+12\sqrt{2}\approx 36.98537208
Share
Copied to clipboard
6\sqrt{8}-4\sqrt{\frac{1}{27}}+3\sqrt{48}
Multiply 2 and 3 to get 6.
6\times 2\sqrt{2}-4\sqrt{\frac{1}{27}}+3\sqrt{48}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
12\sqrt{2}-4\sqrt{\frac{1}{27}}+3\sqrt{48}
Multiply 6 and 2 to get 12.
12\sqrt{2}-4\times \frac{\sqrt{1}}{\sqrt{27}}+3\sqrt{48}
Rewrite the square root of the division \sqrt{\frac{1}{27}} as the division of square roots \frac{\sqrt{1}}{\sqrt{27}}.
12\sqrt{2}-4\times \frac{1}{\sqrt{27}}+3\sqrt{48}
Calculate the square root of 1 and get 1.
12\sqrt{2}-4\times \frac{1}{3\sqrt{3}}+3\sqrt{48}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
12\sqrt{2}-4\times \frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}+3\sqrt{48}
Rationalize the denominator of \frac{1}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
12\sqrt{2}-4\times \frac{\sqrt{3}}{3\times 3}+3\sqrt{48}
The square of \sqrt{3} is 3.
12\sqrt{2}-4\times \frac{\sqrt{3}}{9}+3\sqrt{48}
Multiply 3 and 3 to get 9.
12\sqrt{2}+\frac{-4\sqrt{3}}{9}+3\sqrt{48}
Express -4\times \frac{\sqrt{3}}{9} as a single fraction.
12\sqrt{2}+\frac{-4\sqrt{3}}{9}+3\times 4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
12\sqrt{2}+\frac{-4\sqrt{3}}{9}+12\sqrt{3}
Multiply 3 and 4 to get 12.
\frac{9\left(12\sqrt{2}+12\sqrt{3}\right)}{9}+\frac{-4\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12\sqrt{2}+12\sqrt{3} times \frac{9}{9}.
\frac{9\left(12\sqrt{2}+12\sqrt{3}\right)-4\sqrt{3}}{9}
Since \frac{9\left(12\sqrt{2}+12\sqrt{3}\right)}{9} and \frac{-4\sqrt{3}}{9} have the same denominator, add them by adding their numerators.
\frac{108\sqrt{2}+108\sqrt{3}-4\sqrt{3}}{9}
Do the multiplications in 9\left(12\sqrt{2}+12\sqrt{3}\right)-4\sqrt{3}.
\frac{108\sqrt{2}+104\sqrt{3}}{9}
Do the calculations in 108\sqrt{2}+108\sqrt{3}-4\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}