Solve for x
x = \frac{9}{7} = 1\frac{2}{7} \approx 1.285714286
x=3
Graph
Share
Copied to clipboard
3\left(x^{2}-6x+9\right)+4x\left(x-3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27+4x\left(x-3\right)=0
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27+4x^{2}-12x=0
Use the distributive property to multiply 4x by x-3.
7x^{2}-18x+27-12x=0
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}-30x+27=0
Combine -18x and -12x to get -30x.
a+b=-30 ab=7\times 27=189
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx+27. To find a and b, set up a system to be solved.
-1,-189 -3,-63 -7,-27 -9,-21
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 189.
-1-189=-190 -3-63=-66 -7-27=-34 -9-21=-30
Calculate the sum for each pair.
a=-21 b=-9
The solution is the pair that gives sum -30.
\left(7x^{2}-21x\right)+\left(-9x+27\right)
Rewrite 7x^{2}-30x+27 as \left(7x^{2}-21x\right)+\left(-9x+27\right).
7x\left(x-3\right)-9\left(x-3\right)
Factor out 7x in the first and -9 in the second group.
\left(x-3\right)\left(7x-9\right)
Factor out common term x-3 by using distributive property.
x=3 x=\frac{9}{7}
To find equation solutions, solve x-3=0 and 7x-9=0.
3\left(x^{2}-6x+9\right)+4x\left(x-3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27+4x\left(x-3\right)=0
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27+4x^{2}-12x=0
Use the distributive property to multiply 4x by x-3.
7x^{2}-18x+27-12x=0
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}-30x+27=0
Combine -18x and -12x to get -30x.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 7\times 27}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -30 for b, and 27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 7\times 27}}{2\times 7}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-28\times 27}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-30\right)±\sqrt{900-756}}{2\times 7}
Multiply -28 times 27.
x=\frac{-\left(-30\right)±\sqrt{144}}{2\times 7}
Add 900 to -756.
x=\frac{-\left(-30\right)±12}{2\times 7}
Take the square root of 144.
x=\frac{30±12}{2\times 7}
The opposite of -30 is 30.
x=\frac{30±12}{14}
Multiply 2 times 7.
x=\frac{42}{14}
Now solve the equation x=\frac{30±12}{14} when ± is plus. Add 30 to 12.
x=3
Divide 42 by 14.
x=\frac{18}{14}
Now solve the equation x=\frac{30±12}{14} when ± is minus. Subtract 12 from 30.
x=\frac{9}{7}
Reduce the fraction \frac{18}{14} to lowest terms by extracting and canceling out 2.
x=3 x=\frac{9}{7}
The equation is now solved.
3\left(x^{2}-6x+9\right)+4x\left(x-3\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
3x^{2}-18x+27+4x\left(x-3\right)=0
Use the distributive property to multiply 3 by x^{2}-6x+9.
3x^{2}-18x+27+4x^{2}-12x=0
Use the distributive property to multiply 4x by x-3.
7x^{2}-18x+27-12x=0
Combine 3x^{2} and 4x^{2} to get 7x^{2}.
7x^{2}-30x+27=0
Combine -18x and -12x to get -30x.
7x^{2}-30x=-27
Subtract 27 from both sides. Anything subtracted from zero gives its negation.
\frac{7x^{2}-30x}{7}=-\frac{27}{7}
Divide both sides by 7.
x^{2}-\frac{30}{7}x=-\frac{27}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{30}{7}x+\left(-\frac{15}{7}\right)^{2}=-\frac{27}{7}+\left(-\frac{15}{7}\right)^{2}
Divide -\frac{30}{7}, the coefficient of the x term, by 2 to get -\frac{15}{7}. Then add the square of -\frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{30}{7}x+\frac{225}{49}=-\frac{27}{7}+\frac{225}{49}
Square -\frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{30}{7}x+\frac{225}{49}=\frac{36}{49}
Add -\frac{27}{7} to \frac{225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{15}{7}\right)^{2}=\frac{36}{49}
Factor x^{2}-\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{7}\right)^{2}}=\sqrt{\frac{36}{49}}
Take the square root of both sides of the equation.
x-\frac{15}{7}=\frac{6}{7} x-\frac{15}{7}=-\frac{6}{7}
Simplify.
x=3 x=\frac{9}{7}
Add \frac{15}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}