Evaluate
\frac{12x^{2}}{5}-\frac{15y^{2}}{4}
Expand
\frac{12x^{2}}{5}-\frac{15y^{2}}{4}
Share
Copied to clipboard
\left(6x+3\left(-\frac{5}{2}\right)y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by 2x-\frac{5}{2}y.
\left(6x+\frac{3\left(-5\right)}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Express 3\left(-\frac{5}{2}\right) as a single fraction.
\left(6x+\frac{-15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Multiply 3 and -5 to get -15.
\left(6x-\frac{15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
6x\times \frac{2}{5}x+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 6x-\frac{15}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{6\times 2}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Express 6\times \frac{2}{5} as a single fraction.
\frac{12}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and 2 to get 12.
\frac{12}{5}x^{2}+\frac{6}{2}xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
\frac{12}{5}x^{2}+3xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide 6 by 2 to get 3.
\frac{12}{5}x^{2}+3xy+\frac{-15\times 2}{2\times 5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{15}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+3xy+\frac{-15}{5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{12}{5}x^{2}+3xy-3yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide -15 by 5 to get -3.
\frac{12}{5}x^{2}-\frac{15}{2}y^{2}\times \frac{1}{2}
Combine 3xy and -3yx to get 0.
\frac{12}{5}x^{2}+\frac{-15}{2\times 2}y^{2}
Multiply -\frac{15}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+\frac{-15}{4}y^{2}
Do the multiplications in the fraction \frac{-15}{2\times 2}.
\frac{12}{5}x^{2}-\frac{15}{4}y^{2}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
\left(6x+3\left(-\frac{5}{2}\right)y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by 2x-\frac{5}{2}y.
\left(6x+\frac{3\left(-5\right)}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Express 3\left(-\frac{5}{2}\right) as a single fraction.
\left(6x+\frac{-15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Multiply 3 and -5 to get -15.
\left(6x-\frac{15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
6x\times \frac{2}{5}x+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 6x-\frac{15}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{6\times 2}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Express 6\times \frac{2}{5} as a single fraction.
\frac{12}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and 2 to get 12.
\frac{12}{5}x^{2}+\frac{6}{2}xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
\frac{12}{5}x^{2}+3xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide 6 by 2 to get 3.
\frac{12}{5}x^{2}+3xy+\frac{-15\times 2}{2\times 5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{15}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+3xy+\frac{-15}{5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{12}{5}x^{2}+3xy-3yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide -15 by 5 to get -3.
\frac{12}{5}x^{2}-\frac{15}{2}y^{2}\times \frac{1}{2}
Combine 3xy and -3yx to get 0.
\frac{12}{5}x^{2}+\frac{-15}{2\times 2}y^{2}
Multiply -\frac{15}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+\frac{-15}{4}y^{2}
Do the multiplications in the fraction \frac{-15}{2\times 2}.
\frac{12}{5}x^{2}-\frac{15}{4}y^{2}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}