Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(6x+3\left(-\frac{5}{2}\right)y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by 2x-\frac{5}{2}y.
\left(6x+\frac{3\left(-5\right)}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Express 3\left(-\frac{5}{2}\right) as a single fraction.
\left(6x+\frac{-15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Multiply 3 and -5 to get -15.
\left(6x-\frac{15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
6x\times \frac{2}{5}x+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 6x-\frac{15}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{6\times 2}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Express 6\times \frac{2}{5} as a single fraction.
\frac{12}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and 2 to get 12.
\frac{12}{5}x^{2}+\frac{6}{2}xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
\frac{12}{5}x^{2}+3xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide 6 by 2 to get 3.
\frac{12}{5}x^{2}+3xy+\frac{-15\times 2}{2\times 5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{15}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+3xy+\frac{-15}{5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{12}{5}x^{2}+3xy-3yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide -15 by 5 to get -3.
\frac{12}{5}x^{2}-\frac{15}{2}y^{2}\times \frac{1}{2}
Combine 3xy and -3yx to get 0.
\frac{12}{5}x^{2}+\frac{-15}{2\times 2}y^{2}
Multiply -\frac{15}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+\frac{-15}{4}y^{2}
Do the multiplications in the fraction \frac{-15}{2\times 2}.
\frac{12}{5}x^{2}-\frac{15}{4}y^{2}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
\left(6x+3\left(-\frac{5}{2}\right)y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Use the distributive property to multiply 3 by 2x-\frac{5}{2}y.
\left(6x+\frac{3\left(-5\right)}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Express 3\left(-\frac{5}{2}\right) as a single fraction.
\left(6x+\frac{-15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Multiply 3 and -5 to get -15.
\left(6x-\frac{15}{2}y\right)\left(\frac{2}{5}x+\frac{1}{2}y\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
6x\times \frac{2}{5}x+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 6x-\frac{15}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
6x^{2}\times \frac{2}{5}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{6\times 2}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Express 6\times \frac{2}{5} as a single fraction.
\frac{12}{5}x^{2}+6x\times \frac{1}{2}y-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and 2 to get 12.
\frac{12}{5}x^{2}+\frac{6}{2}xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply 6 and \frac{1}{2} to get \frac{6}{2}.
\frac{12}{5}x^{2}+3xy-\frac{15}{2}y\times \frac{2}{5}x-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide 6 by 2 to get 3.
\frac{12}{5}x^{2}+3xy+\frac{-15\times 2}{2\times 5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{15}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+3xy+\frac{-15}{5}yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{12}{5}x^{2}+3xy-3yx-\frac{15}{2}y^{2}\times \frac{1}{2}
Divide -15 by 5 to get -3.
\frac{12}{5}x^{2}-\frac{15}{2}y^{2}\times \frac{1}{2}
Combine 3xy and -3yx to get 0.
\frac{12}{5}x^{2}+\frac{-15}{2\times 2}y^{2}
Multiply -\frac{15}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}x^{2}+\frac{-15}{4}y^{2}
Do the multiplications in the fraction \frac{-15}{2\times 2}.
\frac{12}{5}x^{2}-\frac{15}{4}y^{2}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.