Solve for x
x=\frac{\sqrt{15}}{6}-\frac{1}{2}\approx 0.145497224
x=-\frac{\sqrt{15}}{6}-\frac{1}{2}\approx -1.145497224
Graph
Share
Copied to clipboard
3\left(2x+1\right)^{2}-5+5=5
Add 5 to both sides of the equation.
3\left(2x+1\right)^{2}=5
Subtracting 5 from itself leaves 0.
\frac{3\left(2x+1\right)^{2}}{3}=\frac{5}{3}
Divide both sides by 3.
\left(2x+1\right)^{2}=\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
2x+1=\frac{\sqrt{15}}{3} 2x+1=-\frac{\sqrt{15}}{3}
Take the square root of both sides of the equation.
2x+1-1=\frac{\sqrt{15}}{3}-1 2x+1-1=-\frac{\sqrt{15}}{3}-1
Subtract 1 from both sides of the equation.
2x=\frac{\sqrt{15}}{3}-1 2x=-\frac{\sqrt{15}}{3}-1
Subtracting 1 from itself leaves 0.
2x=\frac{\sqrt{15}}{3}-1
Subtract 1 from \frac{\sqrt{15}}{3}.
2x=-\frac{\sqrt{15}}{3}-1
Subtract 1 from -\frac{\sqrt{15}}{3}.
\frac{2x}{2}=\frac{\frac{\sqrt{15}}{3}-1}{2} \frac{2x}{2}=\frac{-\frac{\sqrt{15}}{3}-1}{2}
Divide both sides by 2.
x=\frac{\frac{\sqrt{15}}{3}-1}{2} x=\frac{-\frac{\sqrt{15}}{3}-1}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide \frac{\sqrt{15}}{3}-1 by 2.
x=-\frac{\sqrt{15}}{6}-\frac{1}{2}
Divide -\frac{\sqrt{15}}{3}-1 by 2.
x=\frac{\sqrt{15}}{6}-\frac{1}{2} x=-\frac{\sqrt{15}}{6}-\frac{1}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}