Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(-\frac{21}{24}-\frac{14}{24}\right)}{-\frac{7}{8}}-\frac{8}{3}
Least common multiple of 8 and 12 is 24. Convert -\frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{3\times \frac{-21-14}{24}}{-\frac{7}{8}}-\frac{8}{3}
Since -\frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{3\left(-\frac{35}{24}\right)}{-\frac{7}{8}}-\frac{8}{3}
Subtract 14 from -21 to get -35.
\frac{\frac{3\left(-35\right)}{24}}{-\frac{7}{8}}-\frac{8}{3}
Express 3\left(-\frac{35}{24}\right) as a single fraction.
\frac{\frac{-105}{24}}{-\frac{7}{8}}-\frac{8}{3}
Multiply 3 and -35 to get -105.
\frac{-\frac{35}{8}}{-\frac{7}{8}}-\frac{8}{3}
Reduce the fraction \frac{-105}{24} to lowest terms by extracting and canceling out 3.
-\frac{35}{8}\left(-\frac{8}{7}\right)-\frac{8}{3}
Divide -\frac{35}{8} by -\frac{7}{8} by multiplying -\frac{35}{8} by the reciprocal of -\frac{7}{8}.
\frac{-35\left(-8\right)}{8\times 7}-\frac{8}{3}
Multiply -\frac{35}{8} times -\frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{280}{56}-\frac{8}{3}
Do the multiplications in the fraction \frac{-35\left(-8\right)}{8\times 7}.
5-\frac{8}{3}
Divide 280 by 56 to get 5.
\frac{15}{3}-\frac{8}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{15-8}{3}
Since \frac{15}{3} and \frac{8}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{3}
Subtract 8 from 15 to get 7.