Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\frac{3\left(-\frac{21}{24}-\frac{14}{24}\right)}{-\frac{7}{8}}-\frac{8}{3}
Least common multiple of 8 and 12 is 24. Convert -\frac{7}{8} and \frac{7}{12} to fractions with denominator 24.
\frac{3\times \frac{-21-14}{24}}{-\frac{7}{8}}-\frac{8}{3}
Since -\frac{21}{24} and \frac{14}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{3\left(-\frac{35}{24}\right)}{-\frac{7}{8}}-\frac{8}{3}
Subtract 14 from -21 to get -35.
\frac{\frac{3\left(-35\right)}{24}}{-\frac{7}{8}}-\frac{8}{3}
Express 3\left(-\frac{35}{24}\right) as a single fraction.
\frac{\frac{-105}{24}}{-\frac{7}{8}}-\frac{8}{3}
Multiply 3 and -35 to get -105.
\frac{-\frac{35}{8}}{-\frac{7}{8}}-\frac{8}{3}
Reduce the fraction \frac{-105}{24} to lowest terms by extracting and canceling out 3.
-\frac{35}{8}\left(-\frac{8}{7}\right)-\frac{8}{3}
Divide -\frac{35}{8} by -\frac{7}{8} by multiplying -\frac{35}{8} by the reciprocal of -\frac{7}{8}.
\frac{-35\left(-8\right)}{8\times 7}-\frac{8}{3}
Multiply -\frac{35}{8} times -\frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{280}{56}-\frac{8}{3}
Do the multiplications in the fraction \frac{-35\left(-8\right)}{8\times 7}.
5-\frac{8}{3}
Divide 280 by 56 to get 5.
\frac{15}{3}-\frac{8}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{15-8}{3}
Since \frac{15}{3} and \frac{8}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{3}
Subtract 8 from 15 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}