Evaluate
\frac{46}{5}=9.2
Factor
\frac{2 \cdot 23}{5} = 9\frac{1}{5} = 9.2
Share
Copied to clipboard
\frac{3\left(-6\right)}{5}\left(-\frac{2}{3}\right)-\frac{6}{5}\left(-\frac{17}{3}\right)
Express 3\left(-\frac{6}{5}\right) as a single fraction.
\frac{-18}{5}\left(-\frac{2}{3}\right)-\frac{6}{5}\left(-\frac{17}{3}\right)
Multiply 3 and -6 to get -18.
-\frac{18}{5}\left(-\frac{2}{3}\right)-\frac{6}{5}\left(-\frac{17}{3}\right)
Fraction \frac{-18}{5} can be rewritten as -\frac{18}{5} by extracting the negative sign.
\frac{-18\left(-2\right)}{5\times 3}-\frac{6}{5}\left(-\frac{17}{3}\right)
Multiply -\frac{18}{5} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{15}-\frac{6}{5}\left(-\frac{17}{3}\right)
Do the multiplications in the fraction \frac{-18\left(-2\right)}{5\times 3}.
\frac{12}{5}-\frac{6}{5}\left(-\frac{17}{3}\right)
Reduce the fraction \frac{36}{15} to lowest terms by extracting and canceling out 3.
\frac{12}{5}+\frac{-6\left(-17\right)}{5\times 3}
Multiply -\frac{6}{5} times -\frac{17}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{5}+\frac{102}{15}
Do the multiplications in the fraction \frac{-6\left(-17\right)}{5\times 3}.
\frac{12}{5}+\frac{34}{5}
Reduce the fraction \frac{102}{15} to lowest terms by extracting and canceling out 3.
\frac{12+34}{5}
Since \frac{12}{5} and \frac{34}{5} have the same denominator, add them by adding their numerators.
\frac{46}{5}
Add 12 and 34 to get 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}