Evaluate
\frac{25\sqrt{3}}{3}+4\sqrt{5}\approx 23.37802864
Share
Copied to clipboard
3\left(3\sqrt{5}+\sqrt{27}\right)-\left(\sqrt{\frac{4}{3}}+\sqrt{125}\right)
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
3\left(3\sqrt{5}+3\sqrt{3}\right)-\left(\sqrt{\frac{4}{3}}+\sqrt{125}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
9\sqrt{5}+9\sqrt{3}-\left(\sqrt{\frac{4}{3}}+\sqrt{125}\right)
Use the distributive property to multiply 3 by 3\sqrt{5}+3\sqrt{3}.
9\sqrt{5}+9\sqrt{3}-\left(\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{125}\right)
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
9\sqrt{5}+9\sqrt{3}-\left(\frac{2}{\sqrt{3}}+\sqrt{125}\right)
Calculate the square root of 4 and get 2.
9\sqrt{5}+9\sqrt{3}-\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{125}\right)
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
9\sqrt{5}+9\sqrt{3}-\left(\frac{2\sqrt{3}}{3}+\sqrt{125}\right)
The square of \sqrt{3} is 3.
9\sqrt{5}+9\sqrt{3}-\left(\frac{2\sqrt{3}}{3}+5\sqrt{5}\right)
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
9\sqrt{5}+9\sqrt{3}-\left(\frac{2\sqrt{3}}{3}+\frac{3\times 5\sqrt{5}}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 5\sqrt{5} times \frac{3}{3}.
9\sqrt{5}+9\sqrt{3}-\frac{2\sqrt{3}+3\times 5\sqrt{5}}{3}
Since \frac{2\sqrt{3}}{3} and \frac{3\times 5\sqrt{5}}{3} have the same denominator, add them by adding their numerators.
9\sqrt{5}+9\sqrt{3}-\frac{2\sqrt{3}+15\sqrt{5}}{3}
Do the multiplications in 2\sqrt{3}+3\times 5\sqrt{5}.
\frac{3\left(9\sqrt{5}+9\sqrt{3}\right)}{3}-\frac{2\sqrt{3}+15\sqrt{5}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9\sqrt{5}+9\sqrt{3} times \frac{3}{3}.
\frac{3\left(9\sqrt{5}+9\sqrt{3}\right)-\left(2\sqrt{3}+15\sqrt{5}\right)}{3}
Since \frac{3\left(9\sqrt{5}+9\sqrt{3}\right)}{3} and \frac{2\sqrt{3}+15\sqrt{5}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{27\sqrt{5}+27\sqrt{3}-2\sqrt{3}-15\sqrt{5}}{3}
Do the multiplications in 3\left(9\sqrt{5}+9\sqrt{3}\right)-\left(2\sqrt{3}+15\sqrt{5}\right).
\frac{12\sqrt{5}+25\sqrt{3}}{3}
Do the calculations in 27\sqrt{5}+27\sqrt{3}-2\sqrt{3}-15\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}