Evaluate
-\frac{3t^{2}}{4}+\frac{39t}{20}+15
Expand
-\frac{3t^{2}}{4}+\frac{39t}{20}+15
Share
Copied to clipboard
\frac{3\times 4}{5}t\times \frac{1}{2}+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Express 3\times \frac{4}{5} as a single fraction.
\frac{12}{5}t\times \frac{1}{2}+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Multiply 3 and 4 to get 12.
\frac{12\times 1}{5\times 2}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Multiply \frac{12}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{10}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Do the multiplications in the fraction \frac{12\times 1}{5\times 2}.
\frac{6}{5}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\left(\frac{1}{2}\times \frac{3}{4}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Use the distributive property to multiply \frac{1}{2} by \frac{3}{4}t+3.
\frac{6}{5}t+\left(\frac{1\times 3}{2\times 4}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}t+\left(\frac{3}{8}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{6}{5}t+\left(\frac{3}{8}t+\frac{3}{2}\right)\left(10-2t\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{6}{5}t+\frac{3}{8}t\times 10+\frac{3}{8}t\left(-2\right)t+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Apply the distributive property by multiplying each term of \frac{3}{8}t+\frac{3}{2} by each term of 10-2t.
\frac{6}{5}t+\frac{3}{8}t\times 10+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply t and t to get t^{2}.
\frac{6}{5}t+\frac{3\times 10}{8}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Express \frac{3}{8}\times 10 as a single fraction.
\frac{6}{5}t+\frac{30}{8}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply 3 and 10 to get 30.
\frac{6}{5}t+\frac{15}{4}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Reduce the fraction \frac{30}{8} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\frac{15}{4}t+\frac{3\left(-2\right)}{8}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Express \frac{3}{8}\left(-2\right) as a single fraction.
\frac{6}{5}t+\frac{15}{4}t+\frac{-6}{8}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply 3 and -2 to get -6.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{3\times 10}{2}+\frac{3}{2}\left(-2\right)t
Express \frac{3}{2}\times 10 as a single fraction.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{30}{2}+\frac{3}{2}\left(-2\right)t
Multiply 3 and 10 to get 30.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{3}{2}\left(-2\right)t
Divide 30 by 2 to get 15.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{3\left(-2\right)}{2}t
Express \frac{3}{2}\left(-2\right) as a single fraction.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{-6}{2}t
Multiply 3 and -2 to get -6.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15-3t
Divide -6 by 2 to get -3.
\frac{6}{5}t+\frac{3}{4}t-\frac{3}{4}t^{2}+15
Combine \frac{15}{4}t and -3t to get \frac{3}{4}t.
\frac{39}{20}t-\frac{3}{4}t^{2}+15
Combine \frac{6}{5}t and \frac{3}{4}t to get \frac{39}{20}t.
\frac{3\times 4}{5}t\times \frac{1}{2}+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Express 3\times \frac{4}{5} as a single fraction.
\frac{12}{5}t\times \frac{1}{2}+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Multiply 3 and 4 to get 12.
\frac{12\times 1}{5\times 2}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Multiply \frac{12}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{10}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Do the multiplications in the fraction \frac{12\times 1}{5\times 2}.
\frac{6}{5}t+\frac{1}{2}\left(\frac{3}{4}t+3\right)\left(10-2t\right)
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\left(\frac{1}{2}\times \frac{3}{4}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Use the distributive property to multiply \frac{1}{2} by \frac{3}{4}t+3.
\frac{6}{5}t+\left(\frac{1\times 3}{2\times 4}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Multiply \frac{1}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{5}t+\left(\frac{3}{8}t+\frac{1}{2}\times 3\right)\left(10-2t\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 4}.
\frac{6}{5}t+\left(\frac{3}{8}t+\frac{3}{2}\right)\left(10-2t\right)
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\frac{6}{5}t+\frac{3}{8}t\times 10+\frac{3}{8}t\left(-2\right)t+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Apply the distributive property by multiplying each term of \frac{3}{8}t+\frac{3}{2} by each term of 10-2t.
\frac{6}{5}t+\frac{3}{8}t\times 10+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply t and t to get t^{2}.
\frac{6}{5}t+\frac{3\times 10}{8}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Express \frac{3}{8}\times 10 as a single fraction.
\frac{6}{5}t+\frac{30}{8}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply 3 and 10 to get 30.
\frac{6}{5}t+\frac{15}{4}t+\frac{3}{8}t^{2}\left(-2\right)+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Reduce the fraction \frac{30}{8} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\frac{15}{4}t+\frac{3\left(-2\right)}{8}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Express \frac{3}{8}\left(-2\right) as a single fraction.
\frac{6}{5}t+\frac{15}{4}t+\frac{-6}{8}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Multiply 3 and -2 to get -6.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{3}{2}\times 10+\frac{3}{2}\left(-2\right)t
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{3\times 10}{2}+\frac{3}{2}\left(-2\right)t
Express \frac{3}{2}\times 10 as a single fraction.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+\frac{30}{2}+\frac{3}{2}\left(-2\right)t
Multiply 3 and 10 to get 30.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{3}{2}\left(-2\right)t
Divide 30 by 2 to get 15.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{3\left(-2\right)}{2}t
Express \frac{3}{2}\left(-2\right) as a single fraction.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15+\frac{-6}{2}t
Multiply 3 and -2 to get -6.
\frac{6}{5}t+\frac{15}{4}t-\frac{3}{4}t^{2}+15-3t
Divide -6 by 2 to get -3.
\frac{6}{5}t+\frac{3}{4}t-\frac{3}{4}t^{2}+15
Combine \frac{15}{4}t and -3t to get \frac{3}{4}t.
\frac{39}{20}t-\frac{3}{4}t^{2}+15
Combine \frac{6}{5}t and \frac{3}{4}t to get \frac{39}{20}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}