Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{5}-1+\sqrt{5}\left(\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-1\right)
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
3\sqrt{5}-1+\sqrt{5}\left(\frac{\sqrt{5}}{5}-1\right)
The square of \sqrt{5} is 5.
3\sqrt{5}-1+\sqrt{5}\left(\frac{\sqrt{5}}{5}-\frac{5}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{5}{5}.
3\sqrt{5}-1+\sqrt{5}\times \frac{\sqrt{5}-5}{5}
Since \frac{\sqrt{5}}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
3\sqrt{5}-1+\frac{\sqrt{5}\left(\sqrt{5}-5\right)}{5}
Express \sqrt{5}\times \frac{\sqrt{5}-5}{5} as a single fraction.
\frac{5\left(3\sqrt{5}-1\right)}{5}+\frac{\sqrt{5}\left(\sqrt{5}-5\right)}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{5}-1 times \frac{5}{5}.
\frac{5\left(3\sqrt{5}-1\right)+\sqrt{5}\left(\sqrt{5}-5\right)}{5}
Since \frac{5\left(3\sqrt{5}-1\right)}{5} and \frac{\sqrt{5}\left(\sqrt{5}-5\right)}{5} have the same denominator, add them by adding their numerators.
\frac{15\sqrt{5}-5+5-5\sqrt{5}}{5}
Do the multiplications in 5\left(3\sqrt{5}-1\right)+\sqrt{5}\left(\sqrt{5}-5\right).
\frac{10\sqrt{5}}{5}
Do the calculations in 15\sqrt{5}-5+5-5\sqrt{5}.
2\sqrt{5}
Divide 10\sqrt{5} by 5 to get 2\sqrt{5}.