Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{5}+2\sqrt{3}\right)^{2}.
9\times 5+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
45+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Multiply 9 and 5 to get 45.
45+12\sqrt{15}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
45+12\sqrt{15}+4\times 3
The square of \sqrt{3} is 3.
45+12\sqrt{15}+12
Multiply 4 and 3 to get 12.
57+12\sqrt{15}
Add 45 and 12 to get 57.
9\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{5}+2\sqrt{3}\right)^{2}.
9\times 5+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
45+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Multiply 9 and 5 to get 45.
45+12\sqrt{15}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
45+12\sqrt{15}+4\times 3
The square of \sqrt{3} is 3.
45+12\sqrt{15}+12
Multiply 4 and 3 to get 12.
57+12\sqrt{15}
Add 45 and 12 to get 57.