Evaluate
12\sqrt{15}+57\approx 103.475800154
Expand
12 \sqrt{15} + 57 = 103.475800154
Share
Copied to clipboard
9\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{5}+2\sqrt{3}\right)^{2}.
9\times 5+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
45+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Multiply 9 and 5 to get 45.
45+12\sqrt{15}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
45+12\sqrt{15}+4\times 3
The square of \sqrt{3} is 3.
45+12\sqrt{15}+12
Multiply 4 and 3 to get 12.
57+12\sqrt{15}
Add 45 and 12 to get 57.
9\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{5}+2\sqrt{3}\right)^{2}.
9\times 5+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
The square of \sqrt{5} is 5.
45+12\sqrt{5}\sqrt{3}+4\left(\sqrt{3}\right)^{2}
Multiply 9 and 5 to get 45.
45+12\sqrt{15}+4\left(\sqrt{3}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
45+12\sqrt{15}+4\times 3
The square of \sqrt{3} is 3.
45+12\sqrt{15}+12
Multiply 4 and 3 to get 12.
57+12\sqrt{15}
Add 45 and 12 to get 57.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}