Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\times 4\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3}
Multiply 3 and 4 to get 12.
\frac{\left(12\sqrt{3}-4\sqrt{2}\right)\sqrt{3}}{2}
Express \frac{12\sqrt{3}-4\sqrt{2}}{2}\sqrt{3} as a single fraction.
\frac{12\left(\sqrt{3}\right)^{2}-4\sqrt{2}\sqrt{3}}{2}
Use the distributive property to multiply 12\sqrt{3}-4\sqrt{2} by \sqrt{3}.
\frac{12\times 3-4\sqrt{2}\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{36-4\sqrt{2}\sqrt{3}}{2}
Multiply 12 and 3 to get 36.
\frac{36-4\sqrt{6}}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.