Solve for h
h = \frac{9}{2} = 4\frac{1}{2} = 4.5
h = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Share
Copied to clipboard
3^{2}\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
9\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\times 3=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
27=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Multiply 9 and 3 to get 27.
27=h^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
27=\frac{h^{2}\times 2^{2}}{2^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply h^{2} times \frac{2^{2}}{2^{2}}.
27=\frac{h^{2}\times 2^{2}+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{h^{2}\times 2^{2}}{2^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
27=\frac{h^{2}\times 4+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
27=\frac{h^{2}\times 4+3^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
27=\frac{h^{2}\times 4+9\left(\sqrt{3}\right)^{2}}{2^{2}}
Calculate 3 to the power of 2 and get 9.
27=\frac{h^{2}\times 4+9\times 3}{2^{2}}
The square of \sqrt{3} is 3.
27=\frac{h^{2}\times 4+27}{2^{2}}
Multiply 9 and 3 to get 27.
27=\frac{h^{2}\times 4+27}{4}
Calculate 2 to the power of 2 and get 4.
27=h^{2}+\frac{27}{4}
Divide each term of h^{2}\times 4+27 by 4 to get h^{2}+\frac{27}{4}.
h^{2}+\frac{27}{4}=27
Swap sides so that all variable terms are on the left hand side.
h^{2}+\frac{27}{4}-27=0
Subtract 27 from both sides.
h^{2}-\frac{81}{4}=0
Subtract 27 from \frac{27}{4} to get -\frac{81}{4}.
4h^{2}-81=0
Multiply both sides by 4.
\left(2h-9\right)\left(2h+9\right)=0
Consider 4h^{2}-81. Rewrite 4h^{2}-81 as \left(2h\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=\frac{9}{2} h=-\frac{9}{2}
To find equation solutions, solve 2h-9=0 and 2h+9=0.
3^{2}\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
9\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\times 3=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
27=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Multiply 9 and 3 to get 27.
27=h^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
27=\frac{h^{2}\times 2^{2}}{2^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply h^{2} times \frac{2^{2}}{2^{2}}.
27=\frac{h^{2}\times 2^{2}+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{h^{2}\times 2^{2}}{2^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
27=\frac{h^{2}\times 4+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
27=\frac{h^{2}\times 4+3^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
27=\frac{h^{2}\times 4+9\left(\sqrt{3}\right)^{2}}{2^{2}}
Calculate 3 to the power of 2 and get 9.
27=\frac{h^{2}\times 4+9\times 3}{2^{2}}
The square of \sqrt{3} is 3.
27=\frac{h^{2}\times 4+27}{2^{2}}
Multiply 9 and 3 to get 27.
27=\frac{h^{2}\times 4+27}{4}
Calculate 2 to the power of 2 and get 4.
27=h^{2}+\frac{27}{4}
Divide each term of h^{2}\times 4+27 by 4 to get h^{2}+\frac{27}{4}.
h^{2}+\frac{27}{4}=27
Swap sides so that all variable terms are on the left hand side.
h^{2}=27-\frac{27}{4}
Subtract \frac{27}{4} from both sides.
h^{2}=\frac{81}{4}
Subtract \frac{27}{4} from 27 to get \frac{81}{4}.
h=\frac{9}{2} h=-\frac{9}{2}
Take the square root of both sides of the equation.
3^{2}\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Expand \left(3\sqrt{3}\right)^{2}.
9\left(\sqrt{3}\right)^{2}=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\times 3=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
The square of \sqrt{3} is 3.
27=h^{2}+\left(\frac{3\sqrt{3}}{2}\right)^{2}
Multiply 9 and 3 to get 27.
27=h^{2}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To raise \frac{3\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
27=\frac{h^{2}\times 2^{2}}{2^{2}}+\frac{\left(3\sqrt{3}\right)^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply h^{2} times \frac{2^{2}}{2^{2}}.
27=\frac{h^{2}\times 2^{2}+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Since \frac{h^{2}\times 2^{2}}{2^{2}} and \frac{\left(3\sqrt{3}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
27=\frac{h^{2}\times 4+\left(3\sqrt{3}\right)^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
27=\frac{h^{2}\times 4+3^{2}\left(\sqrt{3}\right)^{2}}{2^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
27=\frac{h^{2}\times 4+9\left(\sqrt{3}\right)^{2}}{2^{2}}
Calculate 3 to the power of 2 and get 9.
27=\frac{h^{2}\times 4+9\times 3}{2^{2}}
The square of \sqrt{3} is 3.
27=\frac{h^{2}\times 4+27}{2^{2}}
Multiply 9 and 3 to get 27.
27=\frac{h^{2}\times 4+27}{4}
Calculate 2 to the power of 2 and get 4.
27=h^{2}+\frac{27}{4}
Divide each term of h^{2}\times 4+27 by 4 to get h^{2}+\frac{27}{4}.
h^{2}+\frac{27}{4}=27
Swap sides so that all variable terms are on the left hand side.
h^{2}+\frac{27}{4}-27=0
Subtract 27 from both sides.
h^{2}-\frac{81}{4}=0
Subtract 27 from \frac{27}{4} to get -\frac{81}{4}.
h=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{81}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\left(-\frac{81}{4}\right)}}{2}
Square 0.
h=\frac{0±\sqrt{81}}{2}
Multiply -4 times -\frac{81}{4}.
h=\frac{0±9}{2}
Take the square root of 81.
h=\frac{9}{2}
Now solve the equation h=\frac{0±9}{2} when ± is plus. Divide 9 by 2.
h=-\frac{9}{2}
Now solve the equation h=\frac{0±9}{2} when ± is minus. Divide -9 by 2.
h=\frac{9}{2} h=-\frac{9}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}