Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\times 3\sqrt{3}+\frac{1}{5\sqrt{75}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{9\sqrt{3}+\frac{1}{5\sqrt{75}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{3}+\frac{1}{5\times 5\sqrt{3}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{9\sqrt{3}+\frac{1}{25\sqrt{3}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 5 and 5 to get 25.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{25\left(\sqrt{3}\right)^{2}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Rationalize the denominator of \frac{1}{25\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{25\times 3}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{75}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 25 and 3 to get 75.
\frac{\frac{676}{75}\sqrt{3}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Combine 9\sqrt{3} and \frac{\sqrt{3}}{75} to get \frac{676}{75}\sqrt{3}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{1}}{\sqrt{3}}}{\sqrt{48}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{1}{\sqrt{3}}}{\sqrt{48}}
Calculate the square root of 1 and get 1.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{48}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{3}}{3}}{\sqrt{48}}
The square of \sqrt{3} is 3.
\frac{\frac{676}{75}\sqrt{3}-2\sqrt{3}}{\sqrt{48}}
Cancel out 3, the greatest common factor in 6 and 3.
\frac{\frac{526}{75}\sqrt{3}}{\sqrt{48}}
Combine \frac{676}{75}\sqrt{3} and -2\sqrt{3} to get \frac{526}{75}\sqrt{3}.
\frac{\frac{526}{75}\sqrt{3}}{4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\frac{526}{75}}{4}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{526}{75\times 4}
Express \frac{\frac{526}{75}}{4} as a single fraction.
\frac{526}{300}
Multiply 75 and 4 to get 300.
\frac{263}{150}
Reduce the fraction \frac{526}{300} to lowest terms by extracting and canceling out 2.