Evaluate
\frac{263}{150}\approx 1.753333333
Factor
\frac{263}{2 \cdot 3 \cdot 5 ^ {2}} = 1\frac{113}{150} = 1.7533333333333334
Share
Copied to clipboard
\frac{3\times 3\sqrt{3}+\frac{1}{5\sqrt{75}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{9\sqrt{3}+\frac{1}{5\sqrt{75}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{3}+\frac{1}{5\times 5\sqrt{3}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{9\sqrt{3}+\frac{1}{25\sqrt{3}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 5 and 5 to get 25.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{25\left(\sqrt{3}\right)^{2}}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Rationalize the denominator of \frac{1}{25\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{25\times 3}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
The square of \sqrt{3} is 3.
\frac{9\sqrt{3}+\frac{\sqrt{3}}{75}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Multiply 25 and 3 to get 75.
\frac{\frac{676}{75}\sqrt{3}-6\sqrt{\frac{1}{3}}}{\sqrt{48}}
Combine 9\sqrt{3} and \frac{\sqrt{3}}{75} to get \frac{676}{75}\sqrt{3}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{1}}{\sqrt{3}}}{\sqrt{48}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{1}{\sqrt{3}}}{\sqrt{48}}
Calculate the square root of 1 and get 1.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{48}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{676}{75}\sqrt{3}-6\times \frac{\sqrt{3}}{3}}{\sqrt{48}}
The square of \sqrt{3} is 3.
\frac{\frac{676}{75}\sqrt{3}-2\sqrt{3}}{\sqrt{48}}
Cancel out 3, the greatest common factor in 6 and 3.
\frac{\frac{526}{75}\sqrt{3}}{\sqrt{48}}
Combine \frac{676}{75}\sqrt{3} and -2\sqrt{3} to get \frac{526}{75}\sqrt{3}.
\frac{\frac{526}{75}\sqrt{3}}{4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\frac{526}{75}}{4}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{526}{75\times 4}
Express \frac{\frac{526}{75}}{4} as a single fraction.
\frac{526}{300}
Multiply 75 and 4 to get 300.
\frac{263}{150}
Reduce the fraction \frac{526}{300} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}