Evaluate
\frac{11\sqrt{2}}{2}-1\approx 6.778174593
Share
Copied to clipboard
\left(3\sqrt{2}-1\right)\left(1+3\sqrt{\frac{2}{4}}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Divide 2 by 2 to get 1.
\left(3\sqrt{2}-1\right)\left(1+3\sqrt{\frac{1}{2}}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\left(3\sqrt{2}-1\right)\left(1+3\times \frac{\sqrt{1}}{\sqrt{2}}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
\left(3\sqrt{2}-1\right)\left(1+3\times \frac{1}{\sqrt{2}}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Calculate the square root of 1 and get 1.
\left(3\sqrt{2}-1\right)\left(1+3\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(3\sqrt{2}-1\right)\left(1+3\times \frac{\sqrt{2}}{2}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
The square of \sqrt{2} is 2.
\left(3\sqrt{2}-1\right)\left(1+\frac{3\sqrt{2}}{2}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
Express 3\times \frac{\sqrt{2}}{2} as a single fraction.
\left(3\sqrt{2}-1\right)\left(\frac{2}{2}+\frac{3\sqrt{2}}{2}\right)\times 1-\left(2\sqrt{2}-1\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\left(3\sqrt{2}-1\right)\times \frac{2+3\sqrt{2}}{2}\times 1-\left(2\sqrt{2}-1\right)^{2}
Since \frac{2}{2} and \frac{3\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}\times 1-\left(2\sqrt{2}-1\right)^{2}
Express \left(3\sqrt{2}-1\right)\times \frac{2+3\sqrt{2}}{2} as a single fraction.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\left(2\sqrt{2}-1\right)^{2}
Express \frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}\times 1 as a single fraction.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\left(4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\left(4\times 2-4\sqrt{2}+1\right)
The square of \sqrt{2} is 2.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\left(8-4\sqrt{2}+1\right)
Multiply 4 and 2 to get 8.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\left(9-4\sqrt{2}\right)
Add 8 and 1 to get 9.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2}-\frac{2\left(9-4\sqrt{2}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9-4\sqrt{2} times \frac{2}{2}.
\frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)-2\left(9-4\sqrt{2}\right)}{2}
Since \frac{\left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)}{2} and \frac{2\left(9-4\sqrt{2}\right)}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{6\sqrt{2}+18-2-3\sqrt{2}-18+8\sqrt{2}}{2}
Do the multiplications in \left(3\sqrt{2}-1\right)\left(2+3\sqrt{2}\right)-2\left(9-4\sqrt{2}\right).
\frac{11\sqrt{2}-2}{2}
Do the calculations in 6\sqrt{2}+18-2-3\sqrt{2}-18+8\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}