Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\sqrt{2}\sqrt{6}-3\sqrt{2}\sqrt{5}-\sqrt{5}\sqrt{6}+\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of 3\sqrt{2}-\sqrt{5} by each term of \sqrt{6}-\sqrt{5}.
3\sqrt{2}\sqrt{2}\sqrt{3}-3\sqrt{2}\sqrt{5}-\sqrt{5}\sqrt{6}+\left(\sqrt{5}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
3\times 2\sqrt{3}-3\sqrt{2}\sqrt{5}-\sqrt{5}\sqrt{6}+\left(\sqrt{5}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6\sqrt{3}-3\sqrt{2}\sqrt{5}-\sqrt{5}\sqrt{6}+\left(\sqrt{5}\right)^{2}
Multiply 3 and 2 to get 6.
6\sqrt{3}-3\sqrt{10}-\sqrt{5}\sqrt{6}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
6\sqrt{3}-3\sqrt{10}-\sqrt{30}+\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
6\sqrt{3}-3\sqrt{10}-\sqrt{30}+5
The square of \sqrt{5} is 5.