Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{2}\right)^{2}+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+2\right)^{2}.
9\times 2+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
18+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
Multiply 9 and 2 to get 18.
22+12\sqrt{2}-\left(2-2\sqrt{2}\right)^{2}
Add 18 and 4 to get 22.
22+12\sqrt{2}-\left(4-8\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2\sqrt{2}\right)^{2}.
22+12\sqrt{2}-\left(4-8\sqrt{2}+4\times 2\right)
The square of \sqrt{2} is 2.
22+12\sqrt{2}-\left(4-8\sqrt{2}+8\right)
Multiply 4 and 2 to get 8.
22+12\sqrt{2}-\left(12-8\sqrt{2}\right)
Add 4 and 8 to get 12.
22+12\sqrt{2}-12+8\sqrt{2}
To find the opposite of 12-8\sqrt{2}, find the opposite of each term.
10+12\sqrt{2}+8\sqrt{2}
Subtract 12 from 22 to get 10.
10+20\sqrt{2}
Combine 12\sqrt{2} and 8\sqrt{2} to get 20\sqrt{2}.
9\left(\sqrt{2}\right)^{2}+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+2\right)^{2}.
9\times 2+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
18+12\sqrt{2}+4-\left(2-2\sqrt{2}\right)^{2}
Multiply 9 and 2 to get 18.
22+12\sqrt{2}-\left(2-2\sqrt{2}\right)^{2}
Add 18 and 4 to get 22.
22+12\sqrt{2}-\left(4-8\sqrt{2}+4\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2\sqrt{2}\right)^{2}.
22+12\sqrt{2}-\left(4-8\sqrt{2}+4\times 2\right)
The square of \sqrt{2} is 2.
22+12\sqrt{2}-\left(4-8\sqrt{2}+8\right)
Multiply 4 and 2 to get 8.
22+12\sqrt{2}-\left(12-8\sqrt{2}\right)
Add 4 and 8 to get 12.
22+12\sqrt{2}-12+8\sqrt{2}
To find the opposite of 12-8\sqrt{2}, find the opposite of each term.
10+12\sqrt{2}+8\sqrt{2}
Subtract 12 from 22 to get 10.
10+20\sqrt{2}
Combine 12\sqrt{2} and 8\sqrt{2} to get 20\sqrt{2}.