Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{2}\right)^{2}+6\sqrt{2}+1-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+1\right)^{2}.
9\times 2+6\sqrt{2}+1-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)
The square of \sqrt{2} is 2.
18+6\sqrt{2}+1-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)
Multiply 9 and 2 to get 18.
19+6\sqrt{2}-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)
Add 18 and 1 to get 19.
19+6\sqrt{2}-\left(4-\left(\sqrt{3}\right)^{2}\right)
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
19+6\sqrt{2}-\left(4-3\right)
The square of \sqrt{3} is 3.
19+6\sqrt{2}-1
Subtract 3 from 4 to get 1.
18+6\sqrt{2}
Subtract 1 from 19 to get 18.