Evaluate
\frac{241}{30}\approx 8.033333333
Factor
\frac{241}{2 \cdot 3 \cdot 5} = 8\frac{1}{30} = 8.033333333333333
Share
Copied to clipboard
\left(\frac{12+3}{4}+\frac{4}{15}\right)\left(\frac{3}{4}+\frac{1\times 4+1}{4}\right)
Multiply 3 and 4 to get 12.
\left(\frac{15}{4}+\frac{4}{15}\right)\left(\frac{3}{4}+\frac{1\times 4+1}{4}\right)
Add 12 and 3 to get 15.
\left(\frac{225}{60}+\frac{16}{60}\right)\left(\frac{3}{4}+\frac{1\times 4+1}{4}\right)
Least common multiple of 4 and 15 is 60. Convert \frac{15}{4} and \frac{4}{15} to fractions with denominator 60.
\frac{225+16}{60}\left(\frac{3}{4}+\frac{1\times 4+1}{4}\right)
Since \frac{225}{60} and \frac{16}{60} have the same denominator, add them by adding their numerators.
\frac{241}{60}\left(\frac{3}{4}+\frac{1\times 4+1}{4}\right)
Add 225 and 16 to get 241.
\frac{241}{60}\left(\frac{3}{4}+\frac{4+1}{4}\right)
Multiply 1 and 4 to get 4.
\frac{241}{60}\left(\frac{3}{4}+\frac{5}{4}\right)
Add 4 and 1 to get 5.
\frac{241}{60}\times \frac{3+5}{4}
Since \frac{3}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{241}{60}\times \frac{8}{4}
Add 3 and 5 to get 8.
\frac{241}{60}\times 2
Divide 8 by 4 to get 2.
\frac{241\times 2}{60}
Express \frac{241}{60}\times 2 as a single fraction.
\frac{482}{60}
Multiply 241 and 2 to get 482.
\frac{241}{30}
Reduce the fraction \frac{482}{60} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}