Evaluate
\frac{59}{62}\approx 0.951612903
Factor
\frac{59}{2 \cdot 31} = 0.9516129032258065
Share
Copied to clipboard
\frac{\frac{12+1}{4}+\frac{2\times 8+3}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Multiply 3 and 4 to get 12.
\frac{\frac{13}{4}+\frac{2\times 8+3}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Add 12 and 1 to get 13.
\frac{\frac{13}{4}+\frac{16+3}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Multiply 2 and 8 to get 16.
\frac{\frac{13}{4}+\frac{19}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Add 16 and 3 to get 19.
\frac{\frac{26}{8}+\frac{19}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Least common multiple of 4 and 8 is 8. Convert \frac{13}{4} and \frac{19}{8} to fractions with denominator 8.
\frac{\frac{26+19}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Since \frac{26}{8} and \frac{19}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{45}{8}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Add 26 and 19 to get 45.
\frac{\frac{90}{16}-\frac{31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Least common multiple of 8 and 16 is 16. Convert \frac{45}{8} and \frac{31}{16} to fractions with denominator 16.
\frac{\frac{90-31}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Since \frac{90}{16} and \frac{31}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{59}{16}}{\frac{4\times 2+1}{2}-\frac{5}{8}}
Subtract 31 from 90 to get 59.
\frac{\frac{59}{16}}{\frac{8+1}{2}-\frac{5}{8}}
Multiply 4 and 2 to get 8.
\frac{\frac{59}{16}}{\frac{9}{2}-\frac{5}{8}}
Add 8 and 1 to get 9.
\frac{\frac{59}{16}}{\frac{36}{8}-\frac{5}{8}}
Least common multiple of 2 and 8 is 8. Convert \frac{9}{2} and \frac{5}{8} to fractions with denominator 8.
\frac{\frac{59}{16}}{\frac{36-5}{8}}
Since \frac{36}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{59}{16}}{\frac{31}{8}}
Subtract 5 from 36 to get 31.
\frac{59}{16}\times \frac{8}{31}
Divide \frac{59}{16} by \frac{31}{8} by multiplying \frac{59}{16} by the reciprocal of \frac{31}{8}.
\frac{59\times 8}{16\times 31}
Multiply \frac{59}{16} times \frac{8}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{472}{496}
Do the multiplications in the fraction \frac{59\times 8}{16\times 31}.
\frac{59}{62}
Reduce the fraction \frac{472}{496} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}