Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right)
Multiply \frac{3}{2}i times 4+3i.
\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right)
By definition, i^{2} is -1.
\left(-\frac{9}{2}+6i\right)\left(3+2i\right)
Do the multiplications. Reorder the terms.
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2}
Multiply complex numbers -\frac{9}{2}+6i and 3+2i like you multiply binomials.
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right)
By definition, i^{2} is -1.
-\frac{27}{2}-9i+18i-12
Do the multiplications.
-\frac{27}{2}-12+\left(-9+18\right)i
Combine the real and imaginary parts.
-\frac{51}{2}+9i
Do the additions.
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right))
Multiply \frac{3}{2}i times 4+3i.
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right))
By definition, i^{2} is -1.
Re(\left(-\frac{9}{2}+6i\right)\left(3+2i\right))
Do the multiplications in \frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right). Reorder the terms.
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2})
Multiply complex numbers -\frac{9}{2}+6i and 3+2i like you multiply binomials.
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right))
By definition, i^{2} is -1.
Re(-\frac{27}{2}-9i+18i-12)
Do the multiplications in -\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right).
Re(-\frac{27}{2}-12+\left(-9+18\right)i)
Combine the real and imaginary parts in -\frac{27}{2}-9i+18i-12.
Re(-\frac{51}{2}+9i)
Do the additions in -\frac{27}{2}-12+\left(-9+18\right)i.
-\frac{51}{2}
The real part of -\frac{51}{2}+9i is -\frac{51}{2}.