Evaluate
-\frac{51}{2}+9i=-25.5+9i
Real Part
-\frac{51}{2} = -25\frac{1}{2} = -25.5
Share
Copied to clipboard
\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right)
Multiply \frac{3}{2}i times 4+3i.
\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right)
By definition, i^{2} is -1.
\left(-\frac{9}{2}+6i\right)\left(3+2i\right)
Do the multiplications. Reorder the terms.
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2}
Multiply complex numbers -\frac{9}{2}+6i and 3+2i like you multiply binomials.
-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right)
By definition, i^{2} is -1.
-\frac{27}{2}-9i+18i-12
Do the multiplications.
-\frac{27}{2}-12+\left(-9+18\right)i
Combine the real and imaginary parts.
-\frac{51}{2}+9i
Do the additions.
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3i^{2}\right)\left(3+2i\right))
Multiply \frac{3}{2}i times 4+3i.
Re(\left(\frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right)\right)\left(3+2i\right))
By definition, i^{2} is -1.
Re(\left(-\frac{9}{2}+6i\right)\left(3+2i\right))
Do the multiplications in \frac{3}{2}i\times 4+\frac{3}{2}\times 3\left(-1\right). Reorder the terms.
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2i^{2})
Multiply complex numbers -\frac{9}{2}+6i and 3+2i like you multiply binomials.
Re(-\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right))
By definition, i^{2} is -1.
Re(-\frac{27}{2}-9i+18i-12)
Do the multiplications in -\frac{9}{2}\times 3-\frac{9}{2}\times \left(2i\right)+6i\times 3+6\times 2\left(-1\right).
Re(-\frac{27}{2}-12+\left(-9+18\right)i)
Combine the real and imaginary parts in -\frac{27}{2}-9i+18i-12.
Re(-\frac{51}{2}+9i)
Do the additions in -\frac{27}{2}-12+\left(-9+18\right)i.
-\frac{51}{2}
The real part of -\frac{51}{2}+9i is -\frac{51}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}