Solve for v
v = -\frac{25}{14} = -1\frac{11}{14} \approx -1.785714286
Share
Copied to clipboard
15v+25=v
Use the distributive property to multiply 3v+5 by 5.
15v+25-v=0
Subtract v from both sides.
14v+25=0
Combine 15v and -v to get 14v.
14v=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
v=\frac{-25}{14}
Divide both sides by 14.
v=-\frac{25}{14}
Fraction \frac{-25}{14} can be rewritten as -\frac{25}{14} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}