Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

3^{10}\left(3^{2}x^{2}-4^{2}\right)^{3}\times \left(11^{7}\right)^{2}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
3^{10}\left(3^{2}x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 7 and 2 to get 14.
59049\left(3^{2}x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
Calculate 3 to the power of 10 and get 59049.
59049\left(9x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
Calculate 3 to the power of 2 and get 9.
59049\left(9x^{2}-16\right)^{3}\times 11^{14}\times 2^{4}
Calculate 4 to the power of 2 and get 16.
59049\left(729\left(x^{2}\right)^{3}-3888\left(x^{2}\right)^{2}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(9x^{2}-16\right)^{3}.
59049\left(729x^{6}-3888\left(x^{2}\right)^{2}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
59049\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
59049\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 379749833583241\times 2^{4}
Calculate 11 to the power of 14 and get 379749833583241.
22423847923256797809\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 2^{4}
Multiply 59049 and 379749833583241 to get 22423847923256797809.
22423847923256797809\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 16
Calculate 2 to the power of 4 and get 16.
358781566772108764944\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)
Multiply 22423847923256797809 and 16 to get 358781566772108764944.
261551762176867289644176x^{6}-1394942731609958878102272x^{4}+2479898189528815783292928x^{2}-1469569297498557501210624
Use the distributive property to multiply 358781566772108764944 by 729x^{6}-3888x^{4}+6912x^{2}-4096.
3^{10}\left(3^{2}x^{2}-4^{2}\right)^{3}\times \left(11^{7}\right)^{2}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
3^{10}\left(3^{2}x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 7 and 2 to get 14.
59049\left(3^{2}x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
Calculate 3 to the power of 10 and get 59049.
59049\left(9x^{2}-4^{2}\right)^{3}\times 11^{14}\times 2^{4}
Calculate 3 to the power of 2 and get 9.
59049\left(9x^{2}-16\right)^{3}\times 11^{14}\times 2^{4}
Calculate 4 to the power of 2 and get 16.
59049\left(729\left(x^{2}\right)^{3}-3888\left(x^{2}\right)^{2}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(9x^{2}-16\right)^{3}.
59049\left(729x^{6}-3888\left(x^{2}\right)^{2}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
59049\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 11^{14}\times 2^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
59049\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 379749833583241\times 2^{4}
Calculate 11 to the power of 14 and get 379749833583241.
22423847923256797809\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 2^{4}
Multiply 59049 and 379749833583241 to get 22423847923256797809.
22423847923256797809\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)\times 16
Calculate 2 to the power of 4 and get 16.
358781566772108764944\left(729x^{6}-3888x^{4}+6912x^{2}-4096\right)
Multiply 22423847923256797809 and 16 to get 358781566772108764944.
261551762176867289644176x^{6}-1394942731609958878102272x^{4}+2479898189528815783292928x^{2}-1469569297498557501210624
Use the distributive property to multiply 358781566772108764944 by 729x^{6}-3888x^{4}+6912x^{2}-4096.